

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario)

SEZIONE B - Seconda sessione 2014

PRIMA PROVA SCRITTA DEL_26 novembre 2014

SETTORE INDUSTRIALE

Tema n. 1:

Il candidato descriva l'evoluzione dei sensori utilizzati nell'automazione dei sistemi di produzione.

Tema n. 2:

I materiali polimerici possono essere classificati secondo tre principali famiglie di materiali: le "commodities" o polimeri di massa; i tecnopolimeri; i supertecnopolimeri. Il candidato illustri i principali rappresentanti di queste famiglie e ne descriva alcuni ambiti applicativi.

Tema n. 3:

Il candidato discuta i meccanismi di scambio termico.

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario)

SEZIONE B - Seconda sessione 2014

SECONDA PROVA SCRITTA DEL 2 dicembre 2014

SETTORE INDUSTRIALE (classe di laurea 10 - Ingegneria industriale Ambiti: MECCANICA / ENERGETICA)

Tema n. 1 (ambito MECCANICA):

Il candidato illustri le leggi di moto che descrivono il movimento del sistema di chiusura degli stampi in una pressa ad eccentrico utilizzata nel processo di imbutitura.

Tema n. 2 (ambito MECCANICA):

Il candidato descriva le principali implicazioni a livello progettuale del comportamento viscoelastico dei materiali polimerici.

Tema n. 3 (ambito MECCANICA e ENERGETICA):

Il Candidato descriva le principali caratteristiche di un motore a ciclo Diesel. Si faccia riferimento alle caratteristiche termodinamiche e si discutano le principali applicazioni energetiche.

UNIVERSITA' DEGLI STUDI DI BRESCIA

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario)

SEZIONE B - Seconda sessione 2013

PROVA PRATICA DI PROGETTAZIONE DEL 15 gennaio 2015

SETTORE INDUSTRIALE

(classe di laurea 10 - Ingegneria industriale Ambiti: MECCANICA / ENERGETICA)

Tema n. 1 (ambito MECCANICA / ENERGETICA):

Il candidato, dopo aver eseguito la messa in tavola del componente riportato in Figura 1 (piastra di supporto di un sistema di sollevamento), correggendo e completando il disegno tecnico, scriva il ciclo di lavorazione necessario per realizzare il componente partendo da un grezzo costituito da un parallelepipedo in acciaio C60 di dimensioni 110mm x 60mm x 15mm ottenuto da fusione in terra.

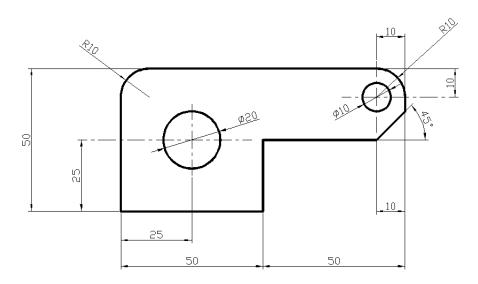


Fig. 1. Pezzo (spessore pezzo finito 10mm, dimensioni in mm).

In particolare si richiede:

- 1. di individuare le tecnologie adeguate alla realizzazione delle superfici del pezzo;
- 2. di selezionare gli utensili indicandone i relativi codici;
- 3. di selezionare in modo adeguato i parametri di lavorazione;
- 4. di verificare che le lavorazioni siano eseguibili ed eventualmente apportare gli accorgimenti necessari affinché le verifiche diano esito positivo;
- 5. di stendere i relativi cartellini e fogli analisi.

In seguito, trascurando in prima approssimazione i fenomeni di smorzamento e utilizzando i dati riportati in Tabella 1, si chiede al candidato di calcolare le frequenze proprie relative alle vibrazioni torsionali del mandrino durante la fase di sgrossatura della superficie superiore.

Dat

Materiale	Acciaio legato
Lunghezza mandrino [mm]	400
Diametro interno mandrino [mm]	350
Diametro fresa [mm]	150
Altezza fresa [mm]	10

Per eventuali dati non forniti il candidato faccia una proposta motivando in modo esaustivo la scelta condotta.

UNIVERSITA' DEGLI STUDI DI BRESCIA

ESAME DI STATO DI ABILITAZIONE ALL'ESERCIZIO DELLA PROFESSIONE DI INGEGNERE (Lauree di primo livello D.M. 509/99 e D.M. 270/04 e Diploma Universitario)

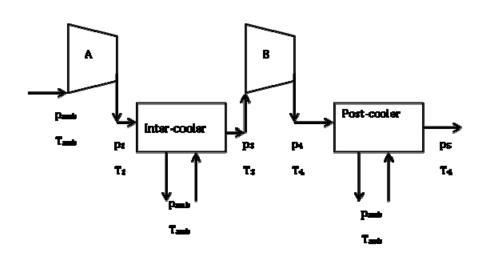
SEZIONE B - Seconda sessione 2013

PROVA PRATICA DI PROGETTAZIONE DEL 15 gennaio 2015

SETTORE INDUSTRIALE

(classe di laurea 10 - Ingegneria industriale Ambiti: MECCANICA / ENERGETICA)

Tema n. 2 (ambito MECCANICA / ENERGETICA):


Si consideri l'impianto compressore a due stadi rappresentato in figura. Il primo stadio (stadio A) aspira una portata d'aria pari a 2000 m³/h a condizioni atmosferiche e la comprime fino alla pressione p_2 . Tale portata è poi raffreddata nell'inter-cooler (che scambia calore con l'ambiente a T_{amb} =300K) ed esce in condizioni 3 (pressione p_3 e temperatura T_3 =360K). L'aria entra quindi nel secondo stadio di compressione, dove viene compressa fino alla pressione p_4 =10MPa. Infine il post-cooler provvede a raffreddare l'aria fino alla temperatura T_5 =300K.

Si supponga che l'aria possa essere approssimata come un gas perfetto biatomico e si ipotizzino i rendimenti dei due compressori pari a 0.8.

Il Candidato:

- descriva il processo appena descritto sul diagramma p-T.
- determini la pressione p₂=p₃ in corrispondenza della quale il lavoro di compressione complessivo è minimo. In tal caso si determini anche la temperatura T₄.
- determini l'entropia prodotta per irreversibilità in ciascuno dei componenti (stadi di compressione, inter-cooler e post-cooler).

Supponendo, infine, di comprimere la portata fino alle condizioni p_5 e T_5 descritte precedentemente, ma mediante un solo compressore (stesso rendimento ipotizzato precedentemente) e un post-cooler, il Candidato paragoni l'entropia generata per irreversibilità nelle due soluzioni impiantistiche.

