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Abstract

We investigate the role of different spending rules in a dynamic asset allocation model for an endow-

ment fund. In particular, we derive the optimal portfolios under the consumption-wealth ratio rule (CW

strategy) and the hybrid rule (hybrid strategy) and compare them with a theoretically optimal (Merton’s)

strategy for both spending and portfolio allocation. Furthermore, we show that the optimal portfolio is

less risky with habit as compared with the optimal portfolio without habit. Similarly, the optimal port-

folio under hybrid strategy is less risky than both CW and Merton’s strategy for given set of constant

parameters. Thus, endowments following hybrid spending rule use asset allocation to protect spending.

Our calibrated numerical analysis on US data shows that the consumption under hybrid strategy is less

volatile as compared to other strategies. However, hybrid strategy comparatively outperforms the con-

ventional Merton’s strategy and CW strategy when the market is highly volatile but under-performs them

when there is a low volatility. Overall, the hybrid strategy is effective in terms of stability of spending and

intergenerational equity because, even if it allows fluctuation in spending in the short run, it guarantees

the convergence of spending towards its long term mean.

Keywords: Spending rules, Endowments, Asset allocation, Habit formation, Bellman’s equation.

1 Introduction

University endowments rank among the largest institutional investors. In 2016, the National Association

of College and University Business Officers (NACUBO) estimated that its member organizations held $515

billion in endowment assets (NACUBO [2016]). Universities and colleges set up endowment funds to ensure

a reasonably smooth earnings and consequent smooth stream of spending for current and future beneficiaries

to preserve equity among generations (also called intergenerational equity, see Tobin [1974]). To achieve this

objective, many endowment funds set pre-defined spending rules. Hansmann [1990] addresses the reason

why endowments would need such rules and concludes that endowments are established to fulfill some basic
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purposes which include: (i) ensure the support of the parent institution in its ongoing mission, (ii) protect

its reputation and intellectual freedom, and (iii) hedge against financial shocks. In general, following a pre-

defined spending rule is not optimal. As a result, endowment funds may invest too much in riskless assets

which generally have lower returns.

Kaufman and Woglom [2005] discuss the role of spending rules in endowment funds. They analyze the

spending rules based on the inflation method, banded inflation, and hybrid method, using Monte Carlo sim-

ulations in a scenario of volatile and uncertain asset returns. Ennis and Williamson [1976] present different

spending rules adopted by endowment funds along with their historical spending patterns. Sedlacek and

Jarvis [2010] provide an analysis of endowment’s current practices and spending policies with their relative

merit and demerits.

In this paper, we examine investment strategies under two spending rules in particular: (i) the

consumption-wealth ratio rule, a simplified form of moving average method, and (ii) the weighted aver-

age or hybrid rule which is more commonly used by large endowment funds like Yale and Stanford (as

stated in Cejnek et al. [2014]). Under consumption-wealth ratio (CW) rule, the spending is a percentage of

the market value of the fund while hybrid rule calculates the spending as a weighted average of the inflation

method and the moving average method. To analyze the effect of the spending rules on risk taking, we derive

the optimal portfolio under the above mentioned spending rules for hyperbolic absolute risk aversion utility

function and compare them with the classical Merton’s optimal investment and consumption.

An endowment fund may exhibit intertemporal preferences where past spending generates a desire (or

need) to maintain the same level. Such a behavior can be modeled through habit formation or habit per-

sistence, which is a more general case of the subsistence level consumption. Actually, the habit can be

interpreted as a time varying subsistence consumption.

In Merton’s case, we consider a general form of utility function including both the case of habit formation

and subsistence level. Under the spending rules mechanism, endowments following hybrid spending rule

protect spending by investing in a less risky portfolio than Merton’s. Similarly, investment in the risky asset

with habit is less than the investment without habit. Thus, their strategy is similar to proportional portfolio

insurance where the fund invests in safe assets to maintain the value needed for having smooth payouts over

time.

We calibrate parameters over three different time horizons to investigate the effectiveness of the spending

rules. The hybrid strategy comparatively outperforms the conventional Merton’s and CW strategies when
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the market is highly volatile but under-performs it when there is a low volatility.

The dynamic asset allocation and consumption studied in this paper is built upon the seminal work by

Samuelson [1969] and Merton [1969], who present an optimal strategy for a market with constant investment

opportunities with additive time-separable utility function. This preliminary work was later extended by

Merton [1971], to a more general utility function which includes the income generated by non-capital gains

sources.

This paper is related to a number of other works in the literature. Merton [1993] applies continuous time

framework to the endowment fund’s problem and derives optimal expenditures and asset allocation strategy

that include non-endowed funds as a part of the total university’s wealth. He concludes that endowment

funds prefer a safer portfolio in the presence of non-financial income risk. Dybvig [1999] suggests that

an endowment fund spending can be sustainable if some TIPS (Treasury Inflation Protection Securities) are

hold in portfolio. Bajeux-Besnainou and Ogunc [2006] address the asset allocation problem of an endowment

fund by including, in the objective function, a minimum spending amount up-rated with inflation and obtain

an explicit formula for optimal spending and portfolio allocation rules. Constantinides [1990] applies the

habit formation to the equity puzzle problem and shows that the high equity premium with low risk aversion

can be explained by the presence of habit formation. Gong and Li [2006] considers the general optimal

investment/consumption problem for an agent with constrained consumption due to habit formation or pre-

commitment. They found that investment in nominal bonds and equity is initially proportional to the excess

wealth over the lower bound imposed due to subsistence level of consumption and then it increases non-

linearly with wealth. Munk [2008] studies the optimal strategies with general asset price dynamics under

two special cases of time varying investment opportunities: stochastic interest rate, and mean-reverting stock

returns. He shows that, in order to finance the habit, investment in bonds and cash is more effective than in

stocks.

The rest of the paper is structured in the following way. Section 2 describes the various spending strate-

gies commonly applied by endowment funds, while Section 3 introduces the general framework for market

dynamics, preferences of endowment fund, and endowment fund investment strategies. Section 4 focuses

on the results of optimal investment and spending under different strategies. Section 5 presents a numerical

application of the previous results, and, finally, Section 6 concludes. Some technical derivations are left to

Appendix A.
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Categories Method Description

1. Simple Rules
Income-based Spend the whole current income.

Consumption-
wealth
ratio

Spend either the predetermined percentage of the
market value of the fund or decide the percentage

every year.

2. Inflation-Based
Rules

Inflation-
protected

Spending grows at the rate of inflation.

Banded-
Inflation

Same as inflation-protected but with the upper
and lower bands.

3. Smoothing
Rules

Moving
Average

Pre-specified percentage of moving average of
market values, generally based on three-years

starting market values.

Spending
Reserve

5-10 percent of the market value is held in the
reserve account and then invested in 90-day

Treasury bills. The amount is withdrawn only
when the fund’s performance is below target.

Stabilization
Fund

The excess endowment returns are used to make
a fund which is then used to control the long term

growth of the total endowment.

4. Hybrid Rules Weighted
Average or

Hybrid
(Yale/Stanford)

Method

Spending is calculated as the weighted average
of spending adjusted for inflation and spending

under the moving average method.

Table I: Endowment Spending Rules. Source: Sedlacek and Jarvis [2010]

2 Spending rules

In practice, there are various spending rules actually followed by endowment funds. According to survey

data Cejnek et al. [2014] based on the original work by Sedlacek and Jarvis [2010], the spending rules are

divided into four categories: (i) simple rules, (ii) inflation-based rules, (iii) smoothing rules, and (iv) hybrid

rules. These rules are summarized in Tab. I.

In the following subsections we consider the following rules in detail:

• Inflation rule;

• Moving average method;

4



• Weighted average or hybrid method.

2.1 Inflation rule

Inflation rule is devised to acknowledge the corrosive effects of inflation and it aims to protect the purchasing

power of endowment fund. The objective of endowment fund is not the mere preservation of the fund but

to strive for a value addition. It can be achieved as long as the overall return from the portfolio exceeds the

rate of inflation. Inflation rule increases the previous period’s spending at the predetermined inflation rate.

Spending in a year equals the spending in the previous year, increased at the inflation rate λ :

c(t) = c0eλ t ,

where the initial value of consumption is a fixed ratio of wealth, i.e. c0 = yR0. The differential of c(t) is

dc(t) = λc(t)dt. (1)

The inflation method is static and trivial, so we will not consider it separately here, however it is included

in the hybrid method along with the moving average method.

2.2 Moving average method

The most popular and commonly used spending rule is the moving average. Dimmock [2012] reports that

typically this rule is based on pre-specified percentage of moving average of 3-years quarterly market value.

The most desirable property of this rule is that it saves some income and reinvests it. This method is used

to smooth the volatility in spending. However, the method is flawed because it uses the market value of

the endowment. Therefore, when the endowment value is rising, the institution may spend more than it is

prudent and when endowment values are falling sharply, this method calls for a budget cut that may curtail

the institution’s mission.

In discrete-time, this spending rule can be algebraically written as follows

c(t) =
y
q
(R(t)+ ...+R(t− (q−1))) .
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In continuous-time, instead, we can write

c(t) =
y
q

∫ t

t−q
R(τ)dτ.

Here, for the sake of simplicity, we take the limit of the previous rule for q which tends towards zero:1

c(t) = lim
q→0

y
q

∫ t

t−q
R(τ)dτ = lim

q→0
yR(t−q) = yR(t) , (2)

which is the same as the consumption-wealth ratio rule stated in Tab. I.

The goal of moving average rule is to dampen the volatility of spending. Consequently, during the

period of boom, this process results in an accelerating curve of upward spending and it causes a false sense

of security of sustainable spending. The smoothing effect of this rule is limited and it may give a misplaced

belief that the higher spending levels are sustainable. Furthermore, the resulting shrinkage in endowment

values due to market decline results into the deep cuts in spending.

2.3 Weighted average or hybrid method

The weighted average method is generally followed by the large endowment funds and it is also known as

Yale/Stanford rule. It is a weighted average of the inflation method and the moving average method.

In discrete-time it is given by

c(t +1) = ωc(t)eλ +(1−ω)
y
q
(R(t +1)+ ..........+R(t +1− (q−1))) , (3)

where ω is the weight. We can simplify it by considering q = 1 to get

c(t +1) = ωc(t)eλ +(1−ω)yR(t +1) . (4)

If we ignore inflation, i.e. λ = 0, we obtain

c(t +1) = ωc(t)+(1−ω)yR(t +1) . (5)

We make the above process stationary by assuming |(1−ω)y|< 1.

1De l’Hôpital theorem is used, by recalling that ∂

∂q
∫ t

t−q R(τ)dτ = R(t−q).
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Remark 1. If we take the limit t +1→ t, we get the same consumption-wealth ratio as in (2)

c(t) = yR(t).

Under the hybrid rule, during the boom, the spending will not increase as fast as compared with the

moving average rule. Conversely, this rule does not call for spending cuts as deep as the moving average

method. Evidence suggests that more and more institutions are changing their spending rules to inflation-

based and hybrid method from moving average method Sedlacek and Jarvis [2010].

We will only consider two spending rules, the consumption-wealth ratio rule, and the hybrid spending

rule given by (2) and (5), respectively for our optimal investment and spending strategies.

3 General framework

Endowment funds usually invest in a variety of assets, however for the purpose of tractability we examine

the aforementioned spending rules in the simplest framework. We consider two types of assets, a riskless

asset and a risky asset in a complete and arbitrage free, continuously open financial market. On the financial

market two assets are listed:

• a riskless asset G(t) which evolves according to

dG(t)
G(t)

= r(t)dt, (6)

where G(t0) = 1, and which is the numéraire and r(t) is the instantaneous nominal interest rate;

• a risky asset S(t) having the price dynamics given by

dS(t)
S(t)

= µdt +σdW (t). (7)

The endowment fund holds θS(t) units of the risky asset S(t), and θG(t) units of risk-less assets G(t).

Thus, at any instant in time t, the investor’s wealth R(t) is given by

R(t) = θG(t)G(t)+θS(t)S(t).
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The differential of wealth can be written as

dR(t) =
(
R(t)r(t)+θS(t)S(t)(µ− r(t))− c(t)

)
dt +θS(t)S(t)σdW (t), (8)

where c(t) is the consumption or spending, following one of the rules mentioned in Section 2 except when

it is also a decision variable.

3.1 Endowment fund investment strategies

We consider the following three strategies:

• Merton’s strategy: Both investment and spending are decision variables.

• Consumption-wealth ratio (CW) strategy: Investment is the only decision variable and spending is

given by the fixed consumption-wealth ratio rule.

• Hybrid strategy: Investment is the only decision variable and spending is given by weighted average

or hybrid method.

3.2 General settings

According to Fraser and Jennings [2010], an endowment fund must define its investment policy state-

ment identifying the investment beliefs, specific investment objectives, re-balancing policy and performance

benchmark which are evaluated periodically. Since an endowment fund must report its performance for each

accounting period, it is reasonable to consider the optimization problem for a finite time horizon [t,T ]. If we

assume the objective of an endowment fund is to maximize the sum of expected utility of spending c(t) and

the expected utility of the final wealth R(T ) then it can be stated as

max
π(t)

Et

[∫ T

t
Uc (c(t))e−ρ(s−t)ds+UR (R(T ))e−ρ(T−t)

]
, (9)

where endowment fund chooses the decision variables π(t), which may include consumption and investment

depending on the strategy considered and ρ is a constant subjective discount rate. We assume the fund’s

preferences are defined by the following utility function
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U (x(t)) =
(x(t)−αX)

1−δ

1−δ
, (10)

where δ > 1. The Arrow-Pratt Relative Risk Aversion (ARA) index is

−
∂ 2U(x(t))

∂x(t)2

∂U(x(t))
∂x(t)

=
δ

x(t)−αX
.

If αX is a positive constant, then this form of the utility function belongs to Hyperbolic Absolute Risk

Aversion (HARA). If αX = 0, ARA index is given by

−
∂ 2U(x(t))

∂x(t)2

∂U(x(t))
∂x(t)

=
δ

x(t)
,

which belongs to Constant Relative Risk Aversion (CRRA).

If αX 6= 0, the utility functions belong to HARA and can be written as

Uc (c(t) ,h(t)) =
(c(t)−h(t))1−δ

1−δ
, UR (R(T )) =

(R(T )−Rm)
1−δ

1−δ
, (11)

where c(t) is the instantaneous outflow or spending from the fund, the constant Rm can be interpreted as the

minimum subsistence level of wealth, whereas h(t) depends on the context, it is either a function representing

the habit formation or a constant representing the subsistence level. Given the utility function (11), it is

always optimal to have outflows higher than the threshold h(t), in fact when c(t) = h(t), the marginal utility

of the outflow tends towards infinity and, accordingly, it is sufficient to increase it by an infinitesimal amount

in order to have an infinite increase in the utility level.

The corresponding ARA indices of (11) are given by

−
∂ 2Uc(c(t),h(t))

∂c(t)2

∂Uc(c(t),h(t))
∂c(t)

=
δ

c(t)−h(t)
, −

∂ 2UR(R(T ))
∂R(t)2

∂UR(R(T ))
∂R(t)

=
δ

R(T )−Rm
,

respectively, which implies that the higher δ the higher the risk aversion. Moreover, the higher h(t) the

higher is the risk aversion. This result shows that having a higher level of minimum outflows means that it is

necessary to invest bigger amounts of wealth in the riskless asset in order to guarantee the outflows, which

implies a higher risk aversion.
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4 The optimal solutions

4.1 Merton’s strategy

Investment and spending are both decision variables, i.e. π(t) ≡ {c(t),θS(t)}. We can define the value

function using (9) as

J(t,R(t))≡ max
c(t),θS(t)

Et

[∫ T

t
φc

(c(s)−h(s))1−δ

1−δ
e−ρ(s−t)ds+φR

(R(T )−Rm)
1−δ

1−δ
e−ρ(T−t)

]
, (12)

where φc and φR are constants which measures the subjective relevance of the utility obtained from intertem-

poral consumption and final wealth, respectively and h(t) is given by

h(t) =


h0e−

∫ t
0 β (u)du +

∫ t
0 α(s)c(s)e−

∫ t
s β (u)duds, habit formation,

h, subsistence level,

0, classical problem,

(13)

where h0 is the initial minimum amount of outflow, α(t) is the weighting function providing the relative

importance to the past outflow in computing the threshold h(t), while β (t) is a discount rate. In habit

formation case, h(t) can be rewritten in continuous time as

dh(t) = (α (t)c(t)−β (t)h(t))dt. (14)

Proposition 1. Given the state variable wealth R(t) described in (8), the optimal consumption and portfolio

solving problem (12) are

• in the case with habit formation:

c(t)∗ = h(t)+φ
1
δ

c
(R(t)−h(t)B(t))(1+B(t)α (t))−

1
δ

A(t)
, (15)

θS(t)∗ =
µ− r(t)
S (t)σ2

R(t)−h(t)B(t)
δ

, (16)
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where

A(t) = φ
1
δ

R e
−
∫ T

t

(
δ−1

δ
r(u)+ ρ

δ
+ (δ−1)(µ−r(u))2

2δ2σ2

)
du

+
∫ T

t
φ

1
δ

c (1+B(s)α(s))
δ−1

δ e
−
∫ s

t

(
δ−1

δ
r(u)+ ρ

δ
+ (δ−1)(µ−r(u))2

2δ2σ2

)
du

ds,

B(t) = Rme−
∫ T

t (−α(u)+β (u)+r(u))du +
∫ T

t
e−

∫ s
t (−α(u)+β (u)+r(u))duds.

• in the case of a subsistence level:

c(t)∗ = h+φ
1
δ

c
R(t)−hB(t)

A(t)
, θS(t)∗ =

µ− r(t)
S(t)σ2

R(t)−hB(t)
δ

. (17)

• in the classical case:

c(t)∗ = φ
1
δ

c
R(t)
A(t)

, θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)
δ

, (18)

where for both the subsistence level case and the classical case we have

A(t) = φ
1
δ

R e
−
∫ T

t

(
δ−1

δ
r(u)+ ρ

δ
+ (δ−1)(µ−r(u))2

2δ2σ2

)
du
+φ

1
δ

c

∫ T

t
e
−
∫ s

t

(
δ−1

δ
r(u)+ ρ

δ
+ (δ−1)(µ−r(u))2

2δ2σ2

)
du

ds,

B(t) = Rme−
∫ T

t r(u)du +
∫ T

t
e−

∫ s
t r(u)duds.

Proof. See Appendix A.1.

The function A(t) in the optimal solutions is the weighted sum of two discount factors: (i) the discount factor

for the final date T multiplied by φ
1
δ

R , and (ii) a kind of intertemporal discount factor for the intertemporal

utility, multiplied by φ
1
δ

c . The function B(t) in the optimal solutions, is the sum of two terms, the subsistence

wealth Rm appropriately discounted from time T and a sum of discount factors. We can see that habit

formation has an effect on the optimal portfolio of the risky asset, as it changes the allocation due to the

reason that the riskless asset (treasury) is comparatively a better investment than the risky asset (stock) to

ensure that the future consumption will not decline below the habit level.

We consider the optimal investment and consumption in the habit formation case defined in (16) and

(15), respectively, in detail below:

Assumption 1. We assume that all the parameters α,β ,µ,σ , and r are constant over time and additionally

r−α +β > 0.
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Corollary 1. Under Assumption 1, (i) The wealth process is itself a Markov process and the functions A(t)

and B(t) can be written as

A(t) = φ
1
δ

R e
−
(

δ−1
δ

r+ ρ

δ
+ (δ−1)(µ−r)2

2δ2σ2

)
(T−t)

+
∫ T

t
φ

1
δ

c (1+B(s)α)
δ−1

δ e
−
(

δ−1
δ

r+ ρ

δ
+ (δ−1)(µ−r)2

2δ2σ2

)
(s−t)

ds,

B(t) = Rme−(r−α+β )(T−t)+
∫ T

t
e−(r−α+β )(s−t)ds = Rme−(r−α+β )(T−t)+

1− e−(r−α+β )(T−t)

r−α +β
, (19)

and finally, if we substitute the value of B(t) into A(t), we get

A(t) = φ
1
δ

R e
−
(

δ−1
δ

r+ ρ

δ
+ (δ−1)(µ−r)2

2δ2σ2

)
(T−t)

+
∫ T

t
φ

1
δ

c (1+Rme−(r−α+β )(T−s)+
1− e−(r−α+β )(T−s)

r−α +β
α)

δ−1
δ e
−
(

δ−1
δ

r+ ρ

δ
+ (δ−1)(µ−r)2

2δ2σ2

)
(s−t)

ds. (20)

(ii) The optimal consumption and portfolio are

c(t)∗ = h(t)+φ
1
δ

c
(R(t)−h(t)B(t))(1+B(t)α)−

1
δ

A(t)
, (21)

θS(t)∗ =
µ− r

S (t)σ2
R(t)−h(t)B(t)

δ
, (22)

where A(t) and B(t) are given by (19) and (20).

The term

1− e−(r−α+β )(T−s)

r−α +β
,

is positive and decreasing over time as r−α +β > 0.

(iii) The optimal portfolio is less risky with habit as compared with the optimal portfolio without habit:

S(t)θS(t)∗ < S(t)θS(t)∗|h(t)=0 .

Proof. The optimal portfolio S(t)θS(t)∗ is given by
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µ− r(t)
S (t)σ2

R(t)−h(t)B(t)
δ

,

Since by construction h(t)≥ 0 and B(t)≥ 0, thus

µ− r(t)
S (t)σ2

R(t)−h(t)B(t)
δ

<
µ− r(t)
S (t)σ2

R(t)
δ

.

Assumption 2. We assume T → ∞.

Corollary 2. Under Assumptions 1 and 2, the optimal consumption and portfolio are

c(t)∗ = h(t)+φ
1
δ

c
(R(t)−h(t) 1

r−α+β
)(1+ α

r−α+β
)−

1
δ

A(t)
,

θS(t)∗ =
(

R(t)− h(t)
r−α +β

)
µ− r

S(t)σ2δ
.

In this case the dynamics of optimal wealth and habit are

dR(t) =

(
R(t)r(t)+

(
R(t)− h(t)

r−α +β

)
(µ− r(t))2

σ2δ
−h(t)

+φ
1
δ

c

(
R(t)−h(t) 1

r−α+β

)(
1+ α

r−α+β

)− 1
δ

A(t)

)
dt

+

(
R(t)− h(t)

r−α +β

)
µ− r(t)

σδ
dW (t),

dh(t) = (β −α)

 α

β −α
φ

1
δ

c

(
R(t)−h(t) 1

r−α+β

)(
1+ α

r−α+β

)− 1
δ

A(t)
−h(t)

dt,

where we can see that the habit h(t) is a mean reverting process if β −α > 0 and is instead exploding if

β −α < 0.

4.2 CW strategy

In this case, the investment θS(t) is the only decision variable and the spending c(t) is given by
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c(t) = yR(t), (23)

therefore we can put φc = 0 and φR = 1 in (12), then the value function can be defined as

J(t,R(t))≡max
θS(t)

Et

[
(R(T )−Rm)

1−δ

1−δ
e−ρ(T−t)

]
. (24)

Proposition 2. Given the state variable R(t) and c(t) described in (8) and (23), respectively, the optimal

portfolio solving problem (24) is

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)−B(t)
δ

, (25)

where

A(t) = e−
∫ T

t ( δ−1
δ

r(s)− δ−1
δ

y+ δ−1
2δ2

(µ−r(s))2

σ2 − ρ

δ
)ds

,

B(t) = Rme−
∫ T

t (r(s)−y)ds,

and y is the constant defined in (23).

Proof. See Appendix A.2.

The function A(t) in proposition 2 is a discount factor calculated as a sum of the accumulated interest rate

and Sharpe ratio diminished by the constant y. The function B(t) in the optimal solutions, is the subsistence

wealth Rm appropriately discounted by a discount factor.

Corollary 3. Under Assumptions 1,2 and r > y, the optimal portfolio (25) becomes

θS(t)∗ =
µ− r

S(t)σ2
R(t)

δ
.

In this case the dynamics of optimal wealth is

dR(t)
R(t)

=

(
r(t)+

1
δ

(µ− r)2

σ2 − y

)
dt +

1
δ

µ− r
σ

dW (t).
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4.3 Hybrid strategy

In this strategy, investment is the only decision variable π ≡ θS(t), while spending evolves according to the

weighted average spending rule (5). We can write the wealth dynamics (8) in a discrete time as

R(t +1) = R(t)(1+ r(t))+θS(t)S(t)(µ− r(t))− c(t)+θS(t)S(t)σZ(t), (26)

and the consumption in a discrete time is given by

c(t +1) = ωc(t)+(1−ω)yR(t +1). (27)

We substitute (26) into (27) to get

c(t +1) = ωc(t)+(1−ω)y(R(t)(1+ r(t))+θS(t)S(t)(µ− r(t))− c(t)+θS(t)S(t)σZ(t)) ,

which can be rewritten in continuous time as

dc(t) = (1−ω)(1+ y)
(

yR(t)(1+ r(t))+ yθS(t)S(t)(µ− r(t))
1+ y

− c(t)
)

dt

+(1−ω)yθS(t)S(t)σdW (t). (28)

If we set a≡ (1−ω)y then we can write

dc(t) = (1−ω)(1+ y)
(

yR(t)(1+ r(t))+ yθS(t)S(t)(µ− r(t))
1+ y

− c(t)
)

dt

+aθS(t)S(t)σdW (t),

where we see that the consumption is a mean reverting process, whose strength of mean reversion is (1−

ω)(1+ y). The consumption reverts towards its long term mean:

yR(t)(1+ r(t))+ yθS(t)S(t)(µ− r(t))
1+ y

,
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which depends on the portfolio choice. The higher the value of ω , the more slowly c(t) converges towards

its long term mean and vice versa.

As the consumption is given by (28), we include it as an additional state variable and put φc = 0 and

φR = 1 in (12), hence the value function can be defined as

J (t,R(t) ,c(t))≡max
θS(t)

Et

[
(R(T )−Rm)

1−δ

1−δ
e−ρ(T−t)

]
. (29)

Proposition 3. Given the state variables R(t) and c(t) as in (8) and (28) and under the assumption that

interest rate r is constant the optimal portfolio solving problem (29) is

θS (t)
∗ =

µ− r
S (t)σ2

R(t)−B(t,c(t))
δ (1−η∗a)

, (30)

where

B(t,c(t)) = η
∗c(t)+Rme−(r−η∗a(1+r))(T−t),

and η∗ takes one of the following values

η =
(1+ r+a−ω)±

√
(1+ r+a−ω)2−4a(1+ r)

2a(1+ r)
,

such that −∞ < η∗ < 1
a and a = y(1−ω)< 1.

Proof. See Appendix A.3.

Corollary 4. Under Assumptions 1,2 and if r > η∗a(1+ r), the optimal portfolio (30) becomes

θS(t)∗ =
µ− r

S(t)σ2
R(t)−η∗c(t)
δ (1−η∗a)

.

In this case the dynamics of optimal wealth and optimal consumption are

dR(t) =

(
R(t)r+

(
(µ− r)2

σ2
R(t)−η∗c(t)
δ (1−η∗a)

)
− c(t)

)
dt +

(
µ− r

σ

R(t)−η∗c(t)
δ (1−η∗a)

)
dW (t),
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dc(t) =

(
aR(t)(1+ r)+a

(
(µ− r)2

σ2
R(t)−B(t,c(t))

δ (1−η∗a)

)
− (1−ω)(1+ y)c(t)

)
dt

+a
(

µ− r
σ

R(t)−B(t,c(t))
δ (1−η∗a)

)
dW (t).

Corollary 5. Under Assumption 1, (i) the optimal portfolio is less risky for the Merton’s strategy as com-

pared with the optimal portfolio for CW strategy if α−β > y and r > y.2

θS,M(t)∗ < θS,C(t)∗,

(ii) Under an additional assumption η = 0, we can write

θS,H(t)∗ < θS,M(t)∗ < θS,C(t)∗.

Proof. We suppose the negation of the given statement is true

θS,M(t)∗ ≥ θS,C(t)∗.

As it is reasonable to assume µ− r > 0, which implies µ−r
S(t)σ2δ

> 0. Therefore

R(t)−h(t)B(t)≥ R(t)−B(t).

We substitute the values of the unknown functions to obtain

R(t)−h(t)

(
Rme−(r−α+β )(T−t)+

1− e−(r−α+β )(T−t)

r−α +β

)
≥ R(t)−Rme−(r−y)(T−t),

since h(t) > 0 and 1−e−(r−α+β )(T−t)

r−α+β
is also positive and decreasing over time as we have r−α +β > 0 under

Assumption 1. As a consequence, the above statement can only be correct only if

e−(r−α+β )(T−t) < e−(r−y)(T−t),

as r−α +β > 0, r > y and α−β > y. Therefore, we conclude that the following statement is true

2In what follows we use subscripts M,C and H with θS(t) or c(t) to indicate optimal portfolio or consumption under Merton’s,
CW and hybrid strategies, respectively.
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θS,M(t)∗ < θS,C(t)∗.

For part (ii), we suppose

θS,H(t)∗ ≥ θS,M(t)∗.

We substitute the values of the unknown functions to obtain

R(t)−Rme−r(T−t) ≥ R(t)−h(t)Rme−(r−α+β )(T−t)−h(t)
1− e−(r−α+β )(T−t)

r−α +β
.

We can clearly see that the left-hand side is smaller than the right-hand side, therefore we conclude that

the statement to be proved is true.

Corollary 6. Under Assumption 1, the optimal consumption under Merton’s strategy as described in (15)

can be equivalent to the consumption under CW strategy as described in (2) depending on the chosen values

of constant y.

Proof. As the optimal consumption for Merton’s strategy is

cM (t)∗ = h(t)+φ
1
δ

c
(R(t)−h(t)B(t))(1+B(t)α(t))−

1
δ

A(t)
,

where

B(t) = Rme−
∫ T

t (−α(u)+β (u)+r(u))du +
∫ T

t
e−

∫ s
t (−α(u)+β (u)+r(u))duds,

and

A(t) = φ
1
δ

R e
−
∫ T

t

(
δ−1

δ
r(u)+ ρ

δ
+ (δ−1)(µ−r(u))2

2δ2σ2

)
du
+
∫ T

t
φ

1
δ

c (1+B(s)α(s))
δ−1

δ e
−
∫ s

t

(
δ−1

δ
r(u)+ ρ

δ
+ (δ−1)(µ−r(u))2

2δ2σ2

)
du

ds.

The consumption for CW strategy is given by

cC(t)∗ = yR(t).
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Parameters 1997-2006 2007-2011 2012-2016
µ 0.0816 0.0117 0.1198
σ 0.1816 0.2659 0.1279

r,ρ 0.0356 0.0122 0.0011

Table II: Parameters calibrated on the S&P 500 and US 3-Month Treasury Bill time series between (i) January
2nd, 1997 and December 29th, 2006 (1997-2006), (ii) January 3rd, 2007 and December 30th, 2011 (2007-
2011), and (iii) January 3rd, 2012 and December 30th, 2016 (2012-2016). Other assumptions include R0 =
100, T = 10, Rm = 0 or 90 when (Rm→ R0) and δ = 2.

Consumption under Merton’s strategy and CW strategy can be equivalent if y is chosen such that

y =
h(t)
R(t)

+φ
1
δ

c
(1+B(t)α(t))−

1
δ

A(t)
−φ

1
δ

c
h(t)B(t)(1+B(t)α(t))−

1
δ

R(t)A(t)
.

if h = 0, then

y =
φ

1
δ

c

A(t)
,

where φ
1
δ

c can be suitably chosen to match y.

5 A numerical application

To illustrate the results of the preceding section, a simplified market structure is taken into account under

Assumption 1 and condition that h(t) = 0. We have estimated the parameters related to the financial mar-

ket and interest rate over three different time horizons: (i) January 2nd, 1997 and December 29th, 2006

(1997-2006), (ii) January 3rd, 2007 and December 30th, 2011 (2007-2011), and (iii) January 3rd, 2012 and

December 30th, 2016 (2012-2016). The parameters of the risky asset S (t) are obtained from the S&P 500

and the value of constant interest rate r is estimated as the average return of US 3-Month Treasury Bill (on

secondary market – daily data). We assume the risk aversion parameter δ is equal to 2 similar to the most

common choices of risk aversion parameter in the habit formation and life cycle literature (Munk [2008];

Gong and Li [2006] and Horneff et al. [2015]; Gourinchas and Parker [2002]). We set the subjective discount

factor ρ equal to the riskless interest rate r. The estimated parameters along with some assumptions about

wealth and preferences are gathered in Tab. II.

We recall the general objective function under the assumption h(t) = 0:
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Figure 1: Wealth and consumption under Merton’s strategy with different values of the weights (φc and φR)
in the objective function (31). Dashed lines show the confidence interval (i.e. mean plus and minus two
standard deviations). The values of all parameters are estimated for the period 1997-2006 as stated in Tab.
II.

J(t,R(t))≡max
π(t)

Et

[∫ T

t
φc

(c(s))1−δ

1−δ
e−ρ(s−t)ds+φR

(R(T )−Rm)
1−δ

1−δ
e−ρ(T−t)

]
, (31)

In Fig. 1 to Fig. 5, the solid lines show the mean of 1000 simulations while dashed lines with shaded

areas show the confidence interval i.e. mean plus and minus two standard deviations using the parameters

estimated for the period 1997-2006. Fig. 6 shows only the mean of 1000 simulations using the parameters

estimated for the periods 1997-2006, 2007-2011 and 2012-2016.

Fig. 1 illustrates the sensitivity of the wealth and consumption to the variation in weights assigned

to the utility of the terminal wealth and intertemporal consumption in the objective function (31) under

Merton’s strategy. The graph indicates that weights do affect the optimal portfolio and consumption and a

comparatively higher weight must be given to φR as compared with φc to maintain wealth above zero in the

long run.

Fig. 2 presents the impact of the variation of consumption-wealth ratio on the paths of wealth and

consumption for CW strategy, in the absence of subsistence wealth Rm = 0. As we can see when y increases,

the level of consumption rises but the terminal wealth declines. For further analysis, we consider the case

when the subsistence wealth Rm approaches the initial wealth R0, the wealth and consumption become less

volatile for all values of y, as shown in the Fig. 3. As expected, we can see that a rise or decline in the wealth

and consumption in the long run depends on the ratio y.
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Figure 2: Wealth and consumption under CW strategy with different values of the consumption-wealth ratio
y. Dashed lines show the confidence interval. The values of all parameters are estimated for the period
1997-2006 as stated in Tab. II.

Figure 3: Wealth and consumption under CW strategy with different values of the consumption-wealth ratio
y when Rm→ R0. Dashed lines show the confidence interval. The values of all parameters are estimated for
the period 1997-2006 as stated in Tab. II.
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Figure 4: Wealth and consumption under hybrid strategy with different values of the weight ω . Dashed lines
show the confidence interval. The values of all parameters are estimated for the period 1997-2006 as stated
in Tab. II.

Fig. 4 shows the wealth and consumption with the variation of weights ω for hybrid strategy under the

assumption that Rm = 0. Interestingly, we can see from the graph that the weight ω for the inflation method

must be chosen prudently, the higher the value of ω , the more slowly c(t) converges towards its long term

mean and vice versa. Similar to CW strategy, if Rm approaches the initial wealth R0, the paths of wealth

and consumption becomes less volatile. For this strategy, the initial consumption must not be higher than a

certain threshold, otherwise the wealth will decline to zero. In fact, endowment managers face a dilemma in

deciding whether to have a spending above a certain level to fund the current activities or to have spending

lower than a threshold to achieve the long term objectives. Thus, in choosing the initial level of spending,

the management must weigh the potential of greater spending levels in the long run against the need for

current spending. The behavior of consumption under hybrid strategy appears to be more acceptable to

endowment managers as: (i) it is less volatile in the long run compared to Merton’s and CW strategies and

(ii) it converges towards its long term mean. In fact, an excessive volatility in spending is undesirable.

Fig. 5 examines the sensitivity of hybrid strategy to the variations in the constant y. We see that while y

increases, so does the volatility in wealth and consumption which implies that y must be chosen cautiously

for the long term growth of wealth. The path of consumption also depends on the value of y. If y is higher

than the optimal value, then the wealth will not grow in the long run and eventually, the consumption will

also decline to a much lower level. If y is lower than the optimal level, then the wealth will grow in the long

run but the consumption will remain lower even in the long run, provided that the values of other parameters
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Figure 5: Wealth and consumption under hybrid strategy with different values of y. Dashed lines show the
confidence interval. The values of all parameters are estimated for the period 1997-2006 as stated in Tab. II.

remain unchanged.

Fig. 6 shows the comparison of wealth, consumption and risky portfolio (all in monetary units) for

Merton’s, CW and hybrid strategies using the parameters estimated for three different periods: (i) 1997-

2006, (ii) 2007-2011, and (iii) 2012-2016. The graphs of the first column show the dynamic behavior of

wealth. We can see that:

• during the first period (1997-2006) under hybrid strategy, the wealth initially declines and then recov-

ers while under Merton’s strategy, it declines sharply.

• during the second period (2007-2011), wealth declines for all strategies but the magnitude of decline

is far less for hybrid strategy compared to the other two strategies.

• during the third period (2012-2016), wealth rises for all three strategies but it rises less strongly for

hybrid strategy.

The graphs of the second column show the dynamic behavior of consumption. For the comparison of con-

sumption we chose, the consumption-wealth ratio for CW strategy and initial consumption for hybrid strategy

to match the initial optimal consumption under Merton’s strategy. We can see that:

• during the first period, consumption rises under Merton’s strategy while it declines under hybrid strat-

egy in a short run and converges towards its long term mean.
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Figure 6: Comparison of Merton’s strategy with φR = 0.98 and φc = 0.02 (continuous line), CW strategy
with y = 0.04 (dashed line) and hybrid strategy with ω = 0.8 and y = 0.04 (dotted line). The values of all
parameters are estimated for the periods 1997-2006, 2007-2011, and 2012-2016 as stated in Tab. II.

24



• during the second period, consumption remains constant under Merton’s strategy, however it declines

under the other two strategies.

• during the third period, consumption increases greatly for CW and Merton’s strategy while it increases

with less intensity for hybrid strategy.

The third column graphs shows the risky portfolio. We can see that during the second period it is optimal to

short sell the risky asset whereas in the third period it is optimal to short sell the riskless asset and invest in

the risky asset.

6 Conclusion

This paper has provided a brief overview of different spending rules applied by endowment funds. The en-

dowment fund managers adopt these rules to effectively preserve the corpus of the fund and have a stable

spending stream. We have obtained the optimal investment strategy under consumption-wealth ratio and

hybrid spending rules. Furthermore, we have compared these optimal portfolios and defined spending rules

with the classical Merton’s optimal portfolio and consumption. We have found that the optimal Merton’s

portfolio is less riskier than that under consumption-wealth ratio rule, while the Merton’s optimal consump-

tion can be replicated using consumption-wealth rule by a suitable selection of the consumption-wealth

ratio. The hybrid strategy, for some values of constant parameters, is less risky than both Merton’s and

consumption-wealth ratio, and consumption under this strategy is less volatile compared to other strategies.

The unique characteristic of hybrid rule is that it allow fluctuation in spending during the short run. Also,

it converges towards its long term mean regardless of the initial allocation for spending. However, hybrid

strategy comparatively outperforms the conventional Merton’s strategy and CW strategy when the market is

highly volatile but under-performs them when there is a low volatility. Thus, an endowment fund must eval-

uate, review and modify its spending rule and investment policy periodically, depending on the conditions of

the financial market.

Appendix A: Mathematical proofs

For simplification of the notation, we will use the following definitions throughout this appendix:
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∂A(t)
∂ t
≡ At ,

∂B(t,c(t))
∂ t

≡ Bt ,
∂B(t,c(t))

∂c
≡ Bc,

∂ 2B(t,c(t))
∂ 2c

≡ Bcc.

A.1 Proof of proposition 1

The value function or indirect utility function is given by

J(t,R(t))≡ max
c(t),θS(t)

Et

[∫ T

t
φc

(c(s)−h(s))1−δ

1−δ
e−ρ(s−t)ds+φR

(R(T )−Rm)
1−δ

1−δ
e−ρ(T−t)

]
.

We know that the above objective function must solve the following differential equation (so-called

Hamilton-Jacobi-Bellman HJB equation):

0 = max
c(t),θS(t)

 φc
(c(s)−h(s))1−δ

1−δ
−ρJ+ ∂J

∂ t +
∂J
∂h(α(t)c(t)−β (t)h(t))+ ∂J

∂R

(
R(t)r(t)

+θS(t)S(t)(µ− r(t))− c(t)
)
+ 1

2
∂ 2J
∂R2 θS(t)2S(t)2σ2

 . (32)

The HJB equation (32) in J(t,R(t)), needs a boundary condition so that the value function coincide with

the final utility function at the time T : J(T,R(T )) =U(R(T )).

We assume the following guess function

J(t,R(t)) = A(t)δ (R(t)−h(t)B(t))1−δ

1−δ
, (33)

where A(t) and B(t) are the functions that must be determined to solve equation (32). Both functions must

satisfy boundary conditions as follows:

A(T )δ = φR⇒ A(T ) = φ
1
δ

R , B(T ) = Rm,

and the first order conditions (FOCs) of (32) w.r.t. θS(t) and c(t) are:

θS(t)∗ =−
µ− r(t)
S(t)σ2

∂J
∂R
∂ 2J
∂R2

, (34)

φc (c(s)−h(s))−δ =
∂J
∂R
− ∂J

∂h
α(t). (35)

By substituting the derivatives of the guess function into both the optimal consumption (35) and the
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optimal portfolio (34), we obtain

c(t)∗ = h(t)+φ
1
δ

c
(R(t)−h(t)B(t))(1+B(t)α(t))−

1
δ

A(t)
, (36)

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)−h(t)B(t)
δ

. (37)

Inserting the optimal consumption (36), the optimal portfolio (37) and the partial derivatives of the guess

function into equation (32), we have

0 =
δ

1−δ
φ

1
δ

c (1+B(t)α(t))1− 1
δ − ρA(t)

1−δ
+

δ

1−δ
At −

A(t)h(t)Bt

R(t)−h(t)B(t)

− A(t)B(t)α(t)h(t)
R(t)−h(t)B(t)

+
A(t)B(t)β (t)h(t)
R(t)−h(t)B(t)

+ r(t)A(t)

+
A(t)h(t)B(t)r(t)
R(t)−h(t)B(t)

+A(t)
(µ− r(t))2

2σ2δ
− A(t)h(t)

R(t)−h(t)B(t)
,

which can be separated into two differential equations, one that consists of the terms containing

(R(t)−h(t)B(t))−1 and one without them and after few simplifications we have


0 = φ

1
δ

c (1+B(t)α(t))
δ−1

δ +At +A(t)
(

1−δ

δ
r(t)− ρ

δ
+ (1−δ )(µ−r(t))2

2δ 2σ2

)
0 = Bt +B(t)(α(t)−β (t)− r(t))+1

(38)

The above ordinary differential equations, together with their corresponding boundary conditions, have

the following unique solutions:

A(t) = φ
1
δ

R e
−
∫ T

t

(
δ−1

δ
r(u)+ ρ

δ
+ (δ−1)(µ−r(u))2

2δ2σ2

)
du

+
∫ T

t
φ

1
δ

c (1+B(s)α(s))
δ−1

δ e
−
∫ s

t

(
δ−1

δ
r(u)+ ρ

δ
+ (δ−1)(µ−r(u))2

2δ2σ2

)
du

ds,

B(t) = Rme−
∫ T

t (−α(u)+β (u)+r(u))du +
∫ T

t
e−

∫ s
t (−α(u)+β (u)+r(u))duds.

The subsistence level case, i.e. h(t) = h and the classical case, i.e. h(t) = 0 can be easily followed from

the above results.
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A.2 Proof of proposition 2

The value function is given by

J (t,R(t))≡max
θS(t)

Et

[
(R(T )−Rm)

1−δ

1−δ
e−ρ(T−t)

]
.

For this objective function, we can write the following HJB equation

0 = max
θS(t)

 −ρJ+ ∂J
∂ t +

∂J
∂R (R(t)r(t)+θS(t)S(t)(µ− r(t))− c(t))

+1
2

∂ 2J
∂R2 θS(t)2S(t)2σ2

 , (39)

and the first order condition (FOC) of (39) w.r.t. θS(t) is

θS(t)∗ =−
µ− r(t)
S(t)σ2

∂J
∂R
∂ 2J
∂R2

. (40)

We assume the following guess function

J(t,R(t)) = A(t)δ (R(t)−B(t))1−δ

1−δ
, (41)

where A(t) is the function that must solve equation (39), with the boundary condition A(T ) = 1, while B(t)

must satisfy the boundary condition B(T ) = Rm, and the optimal portfolio process θS(t)∗ in (40), for our

guess function can be written as

θS(t)∗ =
µ− r(t)
S(t)σ2

R(t)−B(t)
δ

. (42)

Substituting the optimal portfolio (42) and partial derivatives of the guess function into (39), we get

0 =
δ

1−δ
At +A(t)

(
r(t)− y− ρ

1−δ
+

1
2
(µ− r(t))2

σ2δ

)
+

A(t)
R(t)−B(t)

(
B(t)

(
r(t)− y

)
−Bt

)
,

which can be separated into two differential equations, one that consists of the terms containing (R(t)−

B(t))−1 and one without them and after few simplifications, we have
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0 = At +A(t)

(
1−δ

δ

(
r(t)− y

)
+ 1−δ

2δ 2
(µ−r(t))2

σ2 − ρ

δ

)
,

0 = B(t)
(
r(t)− y

)
−Bt .

The above ordinary differential equations with their corresponding boundary conditions have the follow-

ing solutions:

A(t) = e
−
∫ T

t

(
δ−1

δ
r(s)− δ−1

δ
y+ δ−1

2δ2
(µ−r(s))2

σ2 − ρ

δ

)
ds
, B(t) = Rme−

∫ T
t (r(s)−y)ds.

A.3 Proof of proposition 3

The value function is given by

J(t,R(t),c(t))≡max
θS(t)

Et

[
(R(T )−Rm)

1−δ

1−δ
e−ρ(T−t)

]
.

For this objective function, we can write the following HJB equation

0 = max
θS(t)


−ρJ+ ∂J

∂ t +
∂J
∂R

(
R(t)r(t)+θS(t)S(t)(µ− r(t))− c(t)

)
+ ∂J

∂c (1−ω)(1+ y)
(

yR(t)(1+r(t))+yθS(t)S(t)(µ−r(t))
1+y − c(t)

)
+1

2
∂ 2J
∂R2 θS(t)2S(t)2σ2 + 1

2
∂ 2J
∂c2 a2θS(t)2S(t)2σ2 + ∂ 2J

∂c∂R aθS(t)2S(t)2σ2

 , (43)

and the first order condition (FOC) of (43) w.r.t. θS(t) is

θS(t)∗ =−
µ− r(t)
S(t)σ2

∂J
∂R + ∂J

∂c a
∂ 2J
∂R2 +

∂ 2J
∂c2 a2 +2 ∂ 2J

∂c∂R a
. (44)

We assume the following guess function

J(t,R(t),c(t)) = A(t)δ (R(t)−B(t,c(t))1−δ

1−δ
. (45)

Thus, the optimal portfolio process θS(t)∗ in (44), can be written as

θS(t)∗ =−
µ− r(t)
S(t)σ2 A(t)δ (R(t)−B(t,c(t)))−δ 1−Bca

F(t,c(t))
,
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where we define

F(t,c(t)) =−δA(t)δ (R(t)−B(t,c(t)))−δ−1−δA(t)δ (R(t)−B(t,c(t)))−δ−1B2
ca2

−A(t)δ (R(t)−B(t,c(t)))−δ Bcca2 +2δA(t)δ (R(t)−B(t,c(t))−δ−1Bca.

The HJB equation (43), under the hypotheses Bc = η and Bcc = 0, becomes

0 =−A(t)
ρ

1−δ
+

δ

1−δ
At −A(t)

Bt

R(t)−B(t,c(t)
+A(t)r+A(t)

rB(t,c(t))
R(t)−B(t,c(t))

−A(t)
c(t)

R(t)−B(t,c(t))
−A(t)ηa(1+ r)−A(t)

ηa(1+ r)B(t,c(t))
R(t)−B(t,c(t))

+A(t)
η (1−ω)c(t)

R(t)−B(t,c(t))
+A(t)

ηac(t)
R(t)−B(t,c(t))

+
A(t)(µ− r)2

2σ2δ
,

which can be separated into two differential equations, one that consists of the terms containing

(R(t)−B(t,c(t)))−1 and one without them and after few simplifications, we have


0 = At +A(t)

(
1−δ

δ
r− ρ

δ
− 1−δ

δ
ηa(1+ r)+ 1−δ

δ

(µ−r)2

2σ2δ

)
,

0 = Bt −B(t,c(t))(r−ηa(1+ r))+ c(t)(1−η (1−ω)−ηa) ,
(46)

and the optimal portfolio in this case can be written as using (44)

θS(t)∗ =
µ− r

δS(t)σ2
R(t)−B(t,c(t))

1−ηa
.

These equations are both ordinary linear differential equations and their boundary conditions can be

obtained from the boundary condition of the HJB equation: A(T,c(T )) = 1 and B(T,c(T )) = Rm.

The solution of the ODE (46), together with their boundary conditions is given by

A(t) = e
−
(

δ−1
δ

r+ ρ

δ
− δ−1

δ
ηa(1+r)+ δ−1

δ

(µ−r)2

2σ2δ

)
(T−t)

.

Since the second differential equation has been obtained under the hypothesis that Bc = η and Bcc = 0,
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then the only consistent functional form for B(t,c(t)) is

B(t,c(t)) = η (t)c(t)+h(t) ,

where η (t) and h(t) may be functions of time. Thus the second ODE can be rewritten as follows

(
∂η (t)

∂ t
c(t)+

∂h(t)
∂ t

)
− (r−η (t)a(1+ r))(η (t)c(t)+h(t))− (η (t)(1−ω +a)−1)c(t) = 0,

which can be separated into two ODE’s, one which contains c(t) and one which contains all the terms without

c(t)

0 =
∂η (t)

∂ t
− (r−η (t)a(1+ r))η (t)− (η (t)(1−ω +a)−1) , (47)

0 =
∂h(t)

∂ t
− (r−η (t)a(1+ r))h(t) , (48)

with the boundary condition

η (T )c(T )+h(T ) = Rm,

as B(T,c(T )) = Rm and consequently η (T ) = 0 and h(T ) = Rm, which means that η must be a constant and

the ODE (47) (with ∂η(t)
∂ t = 0) gives

η
2a(1+ r)−η (1+ r+a−ω)+1 = 0,

which has two solutions:

η =
(1+ r+a−ω)±

√
(1+ r+a−ω)2−4a(1+ r)

2a(1+ r)
,

where one of the two solutions (η∗) must be chosen suitably.

The ODE (48), together with the boundary condition, has a unique solution

h(t) = Rme−(r−η∗a(1+r))(T−t).

Therefore,
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B(t,c(t)) = η
∗c(t)+Rme−(r−η∗a(1+r))(T−t), (49)

such that −∞ < η∗ < 1
a .
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