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Abstract

We consider an online version of the orienteering problem, where stochastic service requests arise

during a first time interval from customers located on the nodes of a graph. Every request must be

accepted/rejected in real time. Later, a vehicle must visit the accepted customers during a second time

interval. Each accepted request implies a prize, depending on the customer, and a service cost, depending

on the routing decisions. Moreover, an accepted request implies a reduction of the routing time available

for possible future requests. Each acceptance/rejection decision is made to maximize the expected profit,

i.e., the difference between expected prices and expected service costs.

We derive analytical expressions for the exact computation of the optimal policy. Since an exact

policy computation is intractable, we design and test several heuristic approaches, including static ap-

proximation, simple greedy (non-anticipatory) methods, Sample Average Approximation (SAA) of the

objective function using Monte Carlo sampling of future events. We perform extensive computational

tests on the proposed algorithms and discuss the pros and cons of the different methods on the specific

problem.

Keywords: Routing, Heuristics, Random requests, Dynamic vehicle routing, Orienteering problem.

1 Introduction

Dynamic and stochastic routing problems have received increasing attention in recent years. On the academic

side, efficient algorithmic approaches and increased computational power allow to face the complexity of

stochastic models [Psaraftis et al., 2016]; on the practical side, e-commerce and technological advances

require flexible and real-time decision making [Ulmer et al., 2018]. Moreover, time-constrained deliveries

have been one of the fastest growing segments of the delivery business [Campbell and Thomas, 2008],

while it is argued that selective vehicle routing problems are more appropriate than the conventional routing

problems in handling uncertainty with limited resources [Allahviranloo et al., 2014].
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We study a time-constrained, selective, dynamic and stochastic routing problem. Consider a transporta-

tion company that collects and manages requests for long-haul transportation from numerous customers.

Usually, shipments from a certain geographical zone are collected by a vehicle and delivered to a carrier’s

facility. Here, shipments are consolidated according to their destination and sent to other facilities by long-

haul transportation [Pillac et al., 2013].

In particular, we consider the manager of a specific facility who has to organize the picking-up of goods

for the next-day overnight shipments. At the beginning of the day, the manager has a portfolio of mandatory

requests and can figure out a portfolio of spot requests. Mandatory requests arise from customers with a

consolidated relationship of mutual trust with the carrier and use the carrier as a preferential one. These

customers typically have a contract for a continuous and regular service. It is understood that all these

requests are acquired, constitute an obligation for the carrier and provide a certain revenue. Spot requests

arise dynamically on an e-market from occasional customers. A spot request may be accepted or rejected,

but the decision must be taken in real time, or after a short negotiation. If a spot request is accepted, then it

becomes binding on both parties.

We consider a decision problem encompassing two successive days. During the first day, the manager

receives spot requests and, for each request, he/she has the opportunity to either accept or reject the corre-

sponding shipment. During the second day, the customers associated with mandatory requests and accepted

spot requests must be visited by a vehicle to pick-up goods. An accepted request implies a prize, i.e., the

revenue obtained from the shipment service, and a operational cost, i.e., the cost of the deviation in vehicle’s

route to reach the customer and picking-up the goods. Moreover, accepting a request reduces the vehicle’s

time budget [Ulmer et al., 2018], and thus may prevent the acceptance of future and maybe more profitable

requests. Indeed, if a vehicle returns to the facility too late on the second day, it may delay all the scheduled

overnight shipments. Consequently, any vehicle must return to the facility within a sharp deadline. The

effect of an accepted request on the delivery phase following the overnight shipment depends on the package

destination. We assume that the manager cannot control this effect, and thus we do not consider it in this

study.

Our aim is to design and implement a service policy that helps the manager to decide about the acceptance

or rejection of a spot request according to a criterion of maximum expected profit, where the profit is the

algebraic sum of prize and operational cost. Notice that the acceptance/rejection decision is constrained

by and affects routing decisions that will be implemented at a later time. An integrated decision process,
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Figure 1: Graphical illustration of the decision process.

possibly anticipatory of future events, is then required.

For simplicity, we assume that the manager has a single vehicle for the picking-up service, and that the

spatial location of both mandatory and spot requests is known in advance. Thus, we model the problem on a

complete directed graph where nodes correspond to requests. There are two types of nodes: mandatory and

spot. Mandatory nodes must be visited, spot nodes may be visited if they originate a request. A distinguished

feature of our problem is that the decision process about acceptance/rejection of spot requests takes place

before the actual routing is fulfilled. We thus work with two successive time intervals: a decision time

interval (0,T ), placed in day 0, and a routing time interval (0,Dmax), placed in day 1, see Figure 1. During

the decision time interval, spot requests arise randomly according to a known, time-dependent, probability

law and the decision maker must accept/reject them in real time; during the routing time interval, a vehicle

starts from the facility, visits the mandatory nodes and the spot nodes that have been accepted, collects the

parcels, and return to the facility within the time limit. We assume that the traveling and service times are

deterministic. Moreover, we assume that the quantity of goods associated with each request is comparatively

small, so that the vehicle may be regarded as uncapacitated. Note that this latter assumption is consistent with

many practical settings. Indeed, last-mile pickup and delivery of light parcels is characterized by tightness

of customer service times or maximum working time for drivers, while capacity is rarely binding.

In summary, we study a dynamic and stochastic extension of the Orienteering Problem (OP) [Gunawan

et al., 2016], where requests for service arise randomly one at a time along a given decision time interval

according to a known probability law, and the acceptance/rejection of every single request must be made

in real time. The objective is the maximization of the expected profit, where the profit is given by the

difference between the expected total prize (including possible future requests) and the expected traveling

cost (including the visits to possible future requests).
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The main contributions of this paper can be summarized as follows:

• We introduce a new problem, namely the Dynamic and Probabilistic Orienteering Problem (DPOP),

that generalizes the well-known OP by introducing dynamic acceptance/rejection of probabilistic cus-

tomers. Differently from most dynamic routing problems considered in the literature (see Section 2),

in DPOP online decisions have to be taken before the vehicle leaves the depot, so that the whole route

can be revised after each acceptance/rejection decision. The objective to be maximized is the expected

profit.

• We formally analyze the problem, fully characterizing the distribution of the next event and defining

the optimal decision policy accordingly.

• We develop several heuristic approaches, including static approximation, simple greedy (non-

anticipatory) methods, Sample Average Approximation (SAA) of the objective function using Monte

Carlo sampling of future events.

• We perform extensive computational tests on the proposed algorithms and discuss the pros and cons

of the different methods on the specific problem.

The paper is organized as follows. After revising the most relevant literature in Section 2, we formalize

the decision problem in Section 3, where the distribution of the next event is characterized and an analytic

recursive formula for the evaluation of the optimal strategy is obtained. In Section 4, we propose several ap-

proximated algorithmic approaches, whose computational performance is evaluated and discussed in Section

5. Finally, some conclusions are drawn in Section 6.

2 Literature review

The DPOP is a particular dynamic and stochastic vehicle routing problem (DSVRP) which generalizes the

Orienteering Problem (OP). Specifically, the stochastic feature refers to the presence of random requests from

a set of potential customers, while the dynamic feature refers to the fact that random requests reveal over time

and need immediate response. Moreover, a specific feature of the DPOP is that every acceptance/rejection

decision is taken before the vehicle actually starts the tour. As a consequence, the order of visit of the

accepted customers can be modified thoroughly after any acceptance decision. On one hand, this feature

makes the problem very different from most dynamic routing problems, where requests arise while the
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vehicle is on the road. On the other hand, the same feature is shared by routing problems related to attended

home delivery (AHD) services, where, however, the main issue is the management of delivery time windows.

In this section, we review the contributions on stochastic and dynamic OPs and on DSVRPs with stochastic

requests mostly related to our problem.

Concerning stochastic orienteering problems, the reference closest to the present work is by Angelelli

et al. [2017], who study the Probabilistic OP (POP). The problem is formulated on a directed graph, where

each customer is available for visit only with a certain probability. In a first stage, a node subset has to be

selected and a corresponding a priori path has to be determined such that the server can visit all customers

in the subset and reach the destination without exceeding a time budget. In a second stage, after the list of

available customers is revealed, the server follows the a priori path by skipping the absent nodes. The POP

consists in determining a first-stage solution that maximizes the expected profit of the second-stage path,

where the expected profit is the difference between the expected total prize and the expected total cost. A

branch-and-cut exact approach and several matheuristic methods are proposed. In fact, the POP is a static

variant of the problem we study in this paper, where the probability of request from a customer is fixed and

an a priori route based on all possible requests is evaluated. In our DPOP, the probability of a request is a

function of time, and once a request arises, we have to decide immediately whether to accept it or not.

Other stochastic variants of the OP are proposed by İlhan et al. [2008], who discuss the OP with Stochas-

tic Profits (OPSP); Campbell et al. [2011], who study the OP with Stochastic Travel and Service times

(OPSTS); Evers et al. [2014], who consider the OP with Stochastic Weights (OPSW), where weights are

associated with travel costs, travel time (including service time) or fuel consumption on arcs; Zhang et al.

[2014], who study the Stochastic OP with Time Windows (SOPTW), where an uncertain waiting time at a

customer results from a possible queue of competitors arrived earlier. Notice that all the OP mentioned so far

are static problems. Zhang et al. [2018] consider a dynamic variant of the SOPTW, where the server decides

dynamically the next customer to visit, allowing the visit to a customer previously abandoned. The decision

strategy is identified by an approximate dynamic programming approach based on rollout algorithms. We

refer to Gunawan et al. [2016] for additional references to stochastic extensions of the OP.

Concerning AHD problems, Campbell and Savelsbergh [2005] are the first to face grocery delivery

services by optimization techniques. Their setting is similar to ours: requests may arise from known points

on a plane and according to known probabilities, that reduce over time; the objective is the same as the

DPOP, i.e., expected profit. However, there are important differences: requests are associated with narrow
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time windows, there are multiple vehicles and capacity constraints. Concerning the algorithmic approach,

Campbell and Savelsbergh [2005] propose an insertion heuristic to determine the feasibility of a request and

different strategies to evaluate the expected profit associated with a decision. When a new request occurs

at time t, their insertion heuristic considers a static problem where the prize associated with every not-

yet-materialized request is adjusted according to its probability of occurrence computed at time t. Hence,

Campbell and Savelsbergh [2005] face a problem more general than the DPOP, but they analyze a single

algorithmic approach. They consider neither simpler greedy heuristics, nor Sample Average Approximation

methods, as we do in our study. Moreover, no theoretical analysis is provided in [Campbell and Savelsbergh,

2005], whereas we provide an analytical description of the stochastic process embedded in our optimization

problem. The successive studies on AHD problems are mainly focused on time interval management and

incentive schemes to induce customer to choose the best time window (from a routing viewpoint). See, e.g.,

Campbell and Savelsbergh [2006] and Agatz et al. [2011].

Azi et al. [2012] consider a dynamic VRP where vehicles perform multiple routes during their workday.

Requests arrive according to a Poisson process and must be accepted or rejected in real time. An accepted

request is inserted in one of the routes that will be executed later. The authors adapt an ALNS algorithm

developed for the static version of the problem to the dynamic version. The expected gain obtained from the

acceptance of a new request is evaluated by inserting it on a number of request scenarios, generated at the

start of the algorithm. As in the DPOP, every vehicle starts from the depot with a fixed sequence of customers

to visit and the objective is the expected profit. Differently from DPOP, the decision interval and the routing

interval are overlapped, and multiple vehicles start asynchronously over time.

Ulmer and Thomas [2019] consider the capacitated customer acceptance problem with stochastic re-

quests (CAPSR), which is very similar to DPOP. As in the DPOP, they consider a single vehicle and there

are no time windows associated with requests. However, the vehicle is capacitated, the objective is the ex-

pected revenue (no costs are considered), and a (fixed) service time is spent at each visited customer. They

also assume that requests arise according to a Poisson process and that prize and demand associated with each

request are unknown before the request arises. Finally, the CAPSR is not the focus of the paper, primarily

devoted to the development of a general-purpose “meso-parametric” value function approximation.

Concerning general DSVRPs, a first distinction depends on whether stochastic information about possi-

ble future requests is available and used in the decision process or not. In the former case, we have antici-

patory approaches, in the latter, not anticipatory approaches [Ulmer et al., 2018]. Notice that the approach
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used in this paper is anticipatory, since decisions take into account the possible future requests. Anticipatory

approaches are usually based on sampling. More specifically, future customer requests are sampled on the

demand space or the graph nodes, according to the assumed probability distribution. This allows to better

evaluate the impact of current decisions, but requires a significant computational effort. Sampling approaches

for DSVRPs with random requests are proposed by Bent and Hentenryck [2004], Flatberg et al. [2007] and

Sungur et al. [2010]. Short-term sampling is used by Ghiani et al. [2009] for a dynamic pickup and delivery

problem. Sampling based on historical data is used by Hvattum et al. [2006] to solve a real-world case study.

Ghiani et al. [2012] propose an anticipatory insertion waiting approach, based on the concept of center of

gravity of the potential future requests. Finally, Ulmer et al. [2018] design an anticipatory time budgeting

heuristic, drawing on methods of approximate dynamic programming. Notice that, among the cited works,

only [Ghiani et al., 2012] consider random requests from nodes on a graph as in our work, whereas all other

papers consider a probabilistic distribution of requests on a continuous 2-dimensional space. We refer to

Ritzinger et al. [2016] and to Psaraftis et al. [2016] for recent surveys on DSVRPs.

3 Problem description

Let V = {1,2, . . . ,n} be the set of n potential request nodes and let VM ⊆V be the set of mandatory request

nodes. Mandatory requests arise from regular customers and must be satisfied. The remaining potential

request nodes VS = V\VM correspond to spot requests. We will call them optional request nodes from now

on. In general, there is no one-to-one correspondence between nodes in V and actual customers. More

precisely, a regular customer r (originating a mandatory request) might sometimes place a spot request. In

this case, two distinct nodes u ∈ VM and v ∈ VS would be associated with r. Moreover, an optional request

node w ∈VS may be used to represent a group of spot customers located in a geographical unit.

Consider first a deterministic setting. Assume that we have fixed a subset W of request nodes to serve,

VM ⊆W ⊆V , with all requests from nodes in W confirmed. Consider a directed graph G = (V ,A), with node

set V =V ∪{0,n+1}, where 0 is the origin and n+1 is the destination (possibly coinciding with the origin),

and arc set A = {(i, j) : i ∈V ∪{0}, j ∈V ∪{n+1}}. Let pi be the prize associated with node i ∈V , and let

τi, j be the traveling time associated with arc (i, j) ∈ A. We assume also a traveling cost proportional to the

traveling time, so that traveling through arc (i, j) implies a cost C ·τi, j, where C is a properly defined positive

constant. A vehicle must start from the origin, visit all nodes in W according to some order, and then end at
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the destination.

Let τmin(W ) denote the minimum duration of the server’s path, i.e., the duration of a minimum cost

elementary path from 0 to n+1 visiting all nodes in W . Then, set W is feasible if and only if τmin(W )≤Dmax.

Moreover, C · τmin(W ) is the minimum possible cost of the server’s path. In this deterministic setting, the

profit associated with W is the difference between the total collected prize and the minimum traveling cost:

P(W ) = ∑
i∈W

pi−C · τmin(W ).

Moving to a stochastic context, we assume that requests are placed by optional customers during a

time window (0,T ). A random variable Ti, representing the time in which the service request is advanced, is

associated with every node i∈V . For mandatory nodes, the distribution is degenerate: Ti = 0 with probability

1 for all i ∈VM. For all i ∈VS, we have:

Ti =


T i with probability θi,

T +1 with probability 1−θi,

where T i is a continuous random variable with known Cumulative Density Function (CDF), denoted as F i,

and known Probability Density Function (PDF), denoted f i. Thus, we have

F i(t) =


0 if t ≤ 0,∫ t

0
f i(x)dx if 0 < t ≤ T ,

1 if t > T .

For all i ∈ VS, θi is the probability that a request arises from i during the time horizon (0,T ); T + 1 is a

conventional point in time where “late” or “no-show” requests are placed. The CDF of Ti can thus be written

as

Fi(t) = θiF i(t)+(1−θi)I(t), (1)

where I(t) is an indicator function defined as

I(t) =


1 if t ≥ T +1,

0 otherwise.
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We assume that requests arise independently among nodes.

We are facing the following decision problem. At time t ∈ (0,T ), an optional request may arise from a

node i ∈ VS. In real time, we have to decide whether to accept the request or not. The decision criterion is

the maximization of the expected profit.

At time t ∈ (0,T ), we have a set R(t) of nodes whose requests have been received, VM ⊆ R(t)⊆V , and

a set of nodes W (t) whose requests have been received and accepted, VM ⊆W (t) ⊆ R(t). We assume that

τmin(W (t)) ≤ Dmax. During the time interval (0,T ), a proper event is the arrival of a request from a node

in VS, the final event is the achievement of the time horizon T . We have at most h = |VS| proper events,

and consequently at most h decisions to make. Moreover, exactly one set W (t) is associated with each

R(t). Thus, we introduce a counter k of events, with 1 ≤ k ≤ h+ 1, and describe the state of the system at

time t ∈ (0,T ) by the triple (tk,Rk,W k), where tk is the time of occurrence, Rk is the set of nodes that have

already originated a request, W k is the set of nodes whose request has been accepted. The initial state is

(t0,R0,W 0) = (0,VM,VM).

When a proper event occurs, a service policy π decides whether to accept the new request or not; when

the final event occurs, π decides the order of node visits in the final set W k. A proper event is identi-

fied by the ordered pair (t, i), where t is the time of occurrence and i is the node asking for service. Let

π(tk,Rk,W k, t, i) ∈ { /0,{i}} denote the output of the service policy when the proper event (t, i) occurs with

system at state (tk,Rk,W k), with t > tk. Then, when a proper event (t, i) occurs, the system evolves as

follows:

(tk,Rk,W k)−→ (tk+1 = t,Rk+1 = Rk∪{i},W k+1 =W k∪π(tk,Rk,W k, t, i)).

We denote as EPπ(tk,Rk,W k, t, i) the expected profit produced by the service policy π when the proper

event (t, i) occurs with system at state (tk,Rk,W k).

The final event is identified by the ordered pair (T, /0). When the final event occurs, it is easy to define

the maximum gain that can be obtained by any policy:

EPπ(tk,Rk,W k,T, /0) = ∑
i∈W k

pi−C · τmin(W k). (2)

For proper events, the expected gain function can be defined only characterizing the distribution of the

next event. Assume that the proper event (tk+1, ik+1) occurs with system at state (tk,Rk,W k), with tk+1 > tk.
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Notice that the next event will occur at time

tmin(tk+1,Rk+1) = min
{

min{Tj : j ∈V\Rk+1,Tj > tk+1};T
}

where Rk+1 = Rk ∪ {ik+1}. If tmin(tk+1,Rk+1) = T , then the next event will be the final event, and for-

mula (2) can be used to evaluate the expected profit associated with the acceptance or rejection of ik+1. If

tmin(tk+1,Rk+1) < T , then the next event will be proper. In this case, to evaluate the expected profit associ-

ated with the acceptance or rejection of ik+1, we need to characterize the probability distribution of the next

event conditioned to the current system state. This is done in the following theorem, whose proof is given in

Appendix A.

Theorem 1 Assume that the proper event (tk+1, ik+1) occurs with system at state (tk,Rk,W k). Then, the

probability that the next event will be proper and will involve node i ∈V\Rk+1 is

pmin(i|tk+1,Rk+1) =
∫ T

tk+1

[
∏

j∈V\(Rk+1∪{i})

(
1−θ jF j(t)

1−θ jF j(tk+1)

)]
θi f i(t)

1−θ jF i(tk+1)
dt (3)

Moreover, the probability that the next event will be the final event is

pmin( /0|tk+1,Rk+1) = ∏
j∈V\Rk+1

(
1−θ j

1−θ jF j(tk+1)

)
. (4)

To simplify notation, for all i ∈V\Rk+1, let us denote by φi|tk+1,Rk+1(t) the function integrated in (3), i.e.,

φi|tk+1,Rk+1(t) =

[
∏

j∈V\(Rk+1∪{i})

(
1−θ jF j(t)

1−θ jF j(tk+1)

)]
θi f i(t)

1−θ jF i(tk+1)
.
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Then, the expected profit function of the optimal policy π? can be expressed recursively as follows:

EPπ?(tk,Rk,W k, tk+1, ik+1) =

max
{

∑i∈V\Rk+1

∫ T

tk+1
EPπ?

(
tk+1,Rk+1,W k∪{ik+1}, t, i

)
φi|tk+1,Rk(t)dt

+ EPπ?

(
tk+1,Rk+1,W k∪{ik+1},T, /0

)
pmin( /0|tk+1,Rk+1);

∑i∈V\Rk+1

∫ T

tk+1
EPπ?

(
tk+1,Rk+1,W k, t, i

)
φi|tk+1,Rk(t)dt

+ EPπ?

(
tk+1,Rk+1,W k,T, /0

)
pmin( /0|tk+1,Rk+1)

}
where the request from ik+1 is accepted or not according to the maximization of the expected value of the

gain function.

Except for trivial cases, an exact evaluation of the above formula is intractable. Hence, we have to

consider and evaluate suboptimal policies.

4 Solution approaches

Each time an event occurs, we should maximize the recursive expected profit function EPπ? . As evaluating

this function is in general computationally prohibitive, we have to rely on heuristic approximations.

In general, one may think about two classes of solution approaches:

• Static approaches. The idea in this case is to develop a solution approach that is applied only once, at

time 0, with the information available at time 0. This means that the solution will determine a priori

which are the requests for which the service will be provided if requested and those for which the

service will not be provided in any case. Then, the final solution is the one where the requests served

are those that have actually arisen among the selected ones.

• Dynamic approaches. The idea in this case is to reoptimize the problem whenever an event occurs, i.e.,

whatever is the decision rule, it is applied each time a new request is placed taking into account what

are the requests for which a decision has already been taken and what is the information on remaining
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requests at the time the reoptimization is run.

4.1 Static approach

We propose one algorithm that exploits the information available at time 0, solves a problem, and use the

corresponding solution to take future decisions. Thus, this approach does not take into account the dynamic

nature of the DPOP. In particular, the problem solved at time 0 corresponds to the Probabilistic Orienteering

Problem (POP) studied in [Angelelli et al., 2017]. In fact, the POP can be seen as the ‘static’ version of the

DPOP where each customer is associated with a probability of placing a request which does not depend on

time and the decision is taken at time 0 and never modified. The objective is to determine a route that does

not exceed Dmax and maximizes the expected value of the difference between the collected profit and the

traveling cost.

The POP is an extremely difficult problem, as shown in [Angelelli et al., 2017], for which only small

instances can be solved to optimality, Thus, we opted for a heuristic solution for the POP which works as

follows. For each customer i, we multiply the prize pi by θi. This way, we obtain a deterministic problem

which is solved by adapting the heuristic algorithm presented in [Chao et al., 1996] for the OP, where the

visit to customers in VM is imposed and the duration of the route does not exceed Dmax.

The solution determines the subset of requests for which the service will be provided in case they appear.

If a request that has not been selected by the POP solution appears, then the service will be denied. In the

following, we call this algorithm OP-One-Shot.

4.2 Dynamic approaches

We propose two types of dynamic approaches for the solution of the DPOP. The idea behind each of the

approach is to recompute an approximated value of EPπ each time a proper event (request from an optional

customer) occurs. The goal is to determine whether to accept or not the new request. Notice that, considering

time as a continuous variable, the occurrence of two simultaneous requests has probability zero. Thus,

a common feature of the two approaches is that they take a decision on one request at a time. Another

common feature is that, before any decision, the probabilities of the future possible optional requests are

recomputed.

Recall that when the (k+ 1)-th request arises at time tk+1 from node ik+1, we have a set Rk of requests
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already received and a set W k ⊆ Rk of requests accepted. In addition, Rk+1 = Rk ∪{ik+1}. The probability

θ
k+1
i that a request will arise from a node i ∈V\Rk+1 can be computed using the CDF Fi|tk+1 of the random

variable Ti, given that no request has occurred from i in [0, tk+1]. For all t ∈ (tk+1,T ), using (1) we have:

Fi|tk+1(t) =
P(tk+1 < Ti ≤ t)
P(Ti > tk+1)

=
Fi(t)−Fi(tk+1)

1−Fi(tk+1)
=

θi(F i(t)−F i(tk+1))

1−θiF i(tk+1)
. (5)

Thus,

θ
k+1
i = Fi|tk+1(T ) =

θi(1−F i(tk+1))

1−θiF i(tk+1)
. (6)

The dynamic approaches are the following:

1. Myopic approaches. These approaches take a decision by analyzing the information available at the

time the decision is taken.

2. Monte Carlo (MC) approaches. These approaches use MC simulation to predict the policy expected

performance over accept/reject decision. In particular, after arrival of request i, a number of scenarios

about future possible request arrivals are generated. For each of them the value obtained by a policy is

evaluated under both rejection and acceptance of request i.

We now detail the different approaches belonging to the two classes.

4.2.1 Myopic approaches

A myopic approach takes a decision on the proper event (tk+1, ik+1) on the basis of the information available

at time tk+1.

OP-Multi-Shot. OP-Multi-Shot consists in solving a POP each time a request arises. More pre-

cisely, when the event (tk+1, ik+1) occurs, we solve a POP instance where: (a) the nodes in W k are manda-

tory; (b) node ik+1 is optional but has probability 1; (c) nodes i ∈V\Rk+1 are optional with probability θ
k+1
i ,

see (6). We use the same solution algorithm used in OP-One-Shot. Request from ik+1 is accepted if and

only if it is served in the POP solution.

Greedy algorithms. Greedy algorithms take a decision on the basis of simple rules. We defined four

rules, which generated four greedy algorithms. For any path P from origin 0 to destination n+1, let d(P)

be the duration of P , and let ∆i,P be the cheapest insertion time of inserting request node i in path P . Let
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Pk be the path built at time tk to visit request nodes in W k. Initially, P0 is the minimum cost elementary

path from 0 to n+1 visiting all nodes in W 0 =VM. Then, the four greedy algorithms are the following:

1. Profitable Greedy: Request ik+1 is accepted if pik+1−C ·∆ik+1,Pk ≥ 0 and d(Pk)+∆ik+1,Pk ≤

Dmax. The idea is that the request of customer ik+1 is accepted only if it provides a positive net benefit

on the current solution represented by Pk. This rule can be seen as a ‘conservative’ rule as the

acceptance is limited to requests that provide an ‘immediate’ net benefit, i.e., a benefit that does not

depend on what may happen in the future.

2. Feasible Greedy: Request ik+1 is accepted if d(Pk)+∆ik+1,Pk ≤Dmax. This rule may be seen as

an ‘optimistic’ rule as it accepts all requests that can be feasibly satisfied, even in the case they do not

provide an immediate net benefit, in the hope of advantageously combine them with future accepted

requests.

3. Profitable Look-ahead Greedy: This rule uses some heuristic evaluations on the expected

effects of accepting or rejecting the request from node ik+1. The basic idea is to accept a request

not immediately profitable if it might produce synergistic effects with other requests that have not yet

materialized. To explain how the rule works, we need some additional notation.

• Let Pk+1 be the tour obtained from Pk when request ik+1 is inserted through cheapest insertion.

Notice that d(Pk+1) = d(Pk)+∆ik+1,Pk . In the following definitions, P can be either Pk or

Pk+1.

• I(P) = {i∈V\Rk+1 : pi−C ·∆i,P ≥ 0} is the set of ‘interesting’ possible future requests, i.e., re-

quests that would provide an increase in the objective function if they were accepted and inserted

in path P by cheapest insertion.

• AEP(I(P)) = 1
|I(P)|

(
∑i∈I(P) θ

k+1
i (pi−C ·∆i,P)

)
is an estimated expected profit from a request

in I(P).

• Ncall(I(P)) = ∑i∈I(P) θ
k+1
i is an estimate of the number of customers in I(P) that will place a

request.

• τmin(V ) is the duration of the minimum cost elementary path from 0 to n+1 visiting all nodes in

V .

• UC = τmin(V )
|V | is the estimated time needed to visit one request in V .
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• Nserve(I(P)) = Dmax−d(P)
UC is an estimate of the number of requests in I(P) that may be served

given the residual time availability.

• P(I(P)) = AEP(I(P)) ·min{Ncall(I(P)),Nserve(I(P))} is an estimate of the profit that may

be obtained from requests in I(P).

The Profitable Look-ahead Greedy works as follows:

(a) If d(Pk)+∆ik+1,Pk > Dmax then discard ik+1 and stop.

(b) If pik+1−C ·∆ik+1,Pk ≥ 0 then accept ik+1and stop.

(c) If pik+1−C ·∆ik+1,Pk +P(I(Pk+1))≥ P(I(Pk)) then accept ik+1, else discard it.

4. Feasible Look-ahead Greedy: This greedy heuristic works as the Profitable

Look-ahead Greedy except for point (b) which is ignored. The rationale is to give more em-

phasis to future synergistic effects than to current local positive effects.

4.2.2 Monte Carlo (MC) approaches

At each proper event (tk+1, ik+1) MC approaches generate scenarios for requests that may still appear. We

present two approaches. Both of them are based on the following four phases:

1. Feasibility check: if d(Pk)+∆ik+1,Pk > Dmax, then ik+1 is rejected and the procedure stops.

2. Monte Carlo time sampling: It randomly generates a set S of scenarios where, for each request in

V\Rk+1, the time at which the request arises is determined. More precisely, each scenario s is a

sequence of events (ti,s, i) where i ∈V\Rk+1 and tk+1 < ti,s < T . Note that an arrival time is generated

for every i ∈V\Rk+1, but only requests with arrival time less than T are kept in scenario s.

3. Evaluation: For each scenario s ∈S , it solves two distinct problems: one in which the service to ik+1

is forced and one in which the service to ik+1 is forbidden. Let zin(s) and zout(s) be the value of the

solutions obtained for scenario s when forcing or forbidding the service of ik+1, respectively.

4. Decision: If ∑s∈S zin(s) ≥ ∑s∈S zout(s), then ik+1 is served otherwise the service is declined. This

means that ik+1 is served if the expected profit of accepting ik+1 is higher than the one of rejecting its

service.
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The two approaches that we propose are the following.

MC Greedy. In MC Greedy approach, Phase 3 (Evaluation) is implemented as follows: given all

decisions taken up to time tk+1, a greedy algorithm is used to decide on requests in scenario s. Thus, as we

have four myopic greedy algorithms, we obtained four MC Greedy algorithms. We call each algorithm

with the name of the corresponding myopic greedy algorithm preceded by MC.

MC OP-Multi-Shot. In MC OP-Multi-Shot, Phase 3 (Evaluation) is implemented as follows: given

all decisions taken up to time tk+1, a new deterministic static problem is generated using the events in

scenario s. In particular, all request in W k are set mandatory with their respective prizes, request ik+1 is

either mandatory or forbidden, according to which problem is solved, and requests in current scenario s

are considered as deterministic requests with a prize equal to the expected prize (prize multiplied by the

probability at time tk+1). We solved the deterministic problem by adapting the heuristic algorithm presented

in [Chao et al., 1996] for the OP.

5 Computational tests

In this section, we present the computational tests that we made in order to verify the efficacy of the so-

lution algorithms presented in Section 4 and to identify whether the performance of the different solution

approaches depends on problem characteristics. We first describe the instances on which tests have been

performed in Section 5.1 and then show and comment the results in Section 5.2.

5.1 Test instances

As the DPOP has not been studied before in the literature, there are no benchmark instances to work with. We

adapted the benchmark instances for the Probabilistic Orienteering Problem (POP) introduced in [Angelelli

et al., 2017] and modified them to take into account the characteristics of the DPOP and to study the impact

of its peculiarities on solution algorithms. To ease readability, we start by describing the instances generated

in [Angelelli et al., 2017] for the POP.

Coordinates for customers and the depot are taken from TSP benchmark instances provided in the

TSPLIB95 library available at the following url: http://comopt.ifi.uni-heidelberg.de/software/TSPLIB95. We

assume unit speed for the server, that is C = 1, so that time and distance coincide. We selected the subset of
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instances with a number of vertices ranging from 14 to 52, for a total of 16 graphs. In every instance, the

first node is chosen as both the origin and the destination.

The remaining problem characteristics are set as follows:

• The value of Dmax is chosen so that all the mandatory nodes and an increasing fraction of the optional

nodes can be visited. We set Dmax = τmin(M)+ω(τmin(V )− τmin(M)) where τmin(S) is the duration

(length) of the minimum cost elementary path from origin 0 to destination n+ 1 visiting all nodes in

S. As done in [Angelelli et al., 2017], we tested three values of ω: 1/4, 1/2 and 3/4.

• The percentage of mandatory customers with respect to the total number of customers in V has been

set equal to two values: 0% and 25%.

• The values of prizes pi for i ∈V has been generated according to four rules:

P1. All prizes are equal to 1.

P2. The prize of customer i is set to 1+((7141 · i+73) mod 100) as done in [Fischetti et al., 1998].

P3. The prize of customer i is set to 1+d 99·d0i
max j∈V d0 j

e where di j is the distance between node i and node

j.

P4. The prize of customer i is set to d0i.

To obtain a balanced trade-off between prizes and costs, in each instance the prizes are normalized as

follows. First, they are scaled so that their sum is twice C · τmin(V ); second, each prize is rounded to

the nearest integer.

• The probability of appearance of an optional request from a node i ∈ V\VM, i.e., θi, is generated in

two ways:

– Constant for all customers. We tested three different situations: low probability 0.25 (in the fol-

lowing F1), medium probability 0.50 (in the following F2), high probability 0.75 (in the following

F3).

– Randomly generated in the interval [0.25,0.75] (in the following F3).

Concerning the probability distributions, we assume that T i =U [0,T ] for all i ∈V\VM, where U [0,T ] is

the continuous uniform distribution taking values between 0 and T . In this way, the conditional probabilities

θ
k+1
i = Fi|tk+1(T ) are easily computed as θ

k+1
i = θi(T−tk+1)

T−θitk+1 .
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In summary, we have 96 parameter combination. For each TSPLIB instance and parameter combination,

we generated 1000 random realizations. So, we tested in total 1,536,000 instances.

To guarantee a fair comparison of results, the scenarios used in the dynamic approaches have been

generated once for each instance and used by all the approaches.

5.2 Computational results

In this section, we present the computational results obtained by the solution algorithms presented in Section

4. We first focus (Section 5.2.1) on the analysis of the greedy algorithms presented in Section 4.2.1 to

compare the performance of the four rules we propose to determine the acceptance of a request. Then, in

Section 5.2.2, we compare the myopic greedy algorithms with the MC Greedy ones to verify whether the

introduction of the MC simulation improves the performance of the approaches. Finally, in Section 5.2.3,

we show the results related to all approaches presented in Section 4.

The objective values returned by all algorithms are compared with those returned by a Post-exact

algorithm, which provides the optimal solution of the problem using full “a posteriori” information about

customer requests. More precisely, the Post-exact algorithm solves a POP over the set of (mandatory and

optional) nodes arising requests in (0,T ), as this information is available at time T . The visit on mandatory

nodes is imposed, while the probability of optional nodes is set to one. The value of the optimal solution of

the resulting deterministic problem provides an upper bound on the value of the DPOP.

5.2.1 Myopic greedy algorithms

We first focus on the analysis of the myopic greedy algorithms presented in Section 4.2.1. The reason is that

greedy algorithms are based on simple rules and are likely to be applied in practical applications where no

information is available on future events or when no sophisticated solution approach is available. Thus, it is

relevant to determine whether there is a dominance between them and/or whether the performance depends

on problem characteristics.

First, we analyze the average solution quality over all tested instances. The behavior is illustrated in

Figure 2, where the average solution value of the four greedy algorithms is illustrated and compared with the

average solution value of the Post-exact algorithm.

The figure shows that Profitable Look-ahead Greedy and Feasible Look-ahead
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Figure 2: Myopic greedy algorithms and Post-exact: average solution values.

Greedy outperform both Profitable Greedy and Feasible Greedy, with the latter being slightly

better than the former. In addition, despite being based on basic rules, their gap with respect to the bound

provided by Post-exact is reasonable.

A more detailed analysis of the behavior of myopic greedy algorithms on the basis of problem character-

istics is provided in Table I. The table reports, for each greedy algorithm, the percentage gap of the average

solution value over all instances with respect to the average solution value obtained by Post-exact. The

gap is calculated as:

avg(myopic Greedy)−avg(Post-exact)
avg(Post-exact)

where avg(A) is the average solution value over all instances obtained by algorithm A and myopic refers

to any one of the four algorithmic variants considered here. The results are classified by: values of ω ,

percentage of mandatory customers (called M from now on), rule for generating the probability of a request

from an optional node and rule for generating customers’ profits. The last line of the table reports the average

over all instances.

The results confirm that Feasible Look-ahead Greedy is the best myopic greedy algorithm with

an average percentage gap which is slightly below 20%, while the worst is the Profitable Greedywith

an average percentage gap of almost 36%. The reason for the bad behavior of Profitable Greedy is

related to the fact that it is based on a too conservative rule which prevents accepting requests that do not
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Profitable Feasible Profitable Feasible
Greedy Greedy Look-ahead Look-ahead

Greedy Greedy

ω = 1/4 33.54 45.83 29.25 23.06
ω = 1/2 36.79 37.11 20.94 20.33
ω = 3/4 36.40 20.56 15.64 17.11
M = 0% 71.73 51.67 34.42 35.58
M = 25% 12.33 20.69 12.24 9.45
F1 34.04 28.02 22.24 21.25
F2 21.52 50.18 19.80 19.96
F3 34.30 28.79 23.46 23.02
F4 40.52 35.10 19.03 16.93
P1 34.55 29.23 18.62 18.61
P2 27.21 36.56 15.49 13.34
P3 41.79 32.70 25.70 24.37
P4 41.74 32.84 25.69 24.35
All 35.81 32.93 21.00 19.78

Table I: Performance of myopic greedy algorithms with respect to Post-exact

seem to be convenient immediately but may turn out to be convenient when combined with future requests.

This is particularly evident when looking at the results classified by value of M: when M = 0%, then the gap

of Profitable Greedy is huge, almost 72%. In fact, in this case, as no request is mandatory, the cost

related to the insertion of the first customer placing a request may turn out to be very high as the route is

empty at the beginning, due to the absence of mandatory nodes. This induces Profitable Greedy to

accept very few (if any) requests. When instead M = 25%, the insertion cost may be lower and this favor the

acceptance of requests. In addition, in the latter case, part of the solution, the one that serves the mandatory

nodes, is in common with the solution of Post-exact, meaning that these customers are necessarily served

by both solutions, and this reduces the gap. This trend is confirmed for all myopic greedy algorithms: the

gap with respect to Post-exact is much larger for instances where M = 0% than for instances where

M = 25% for the same reason explained above. Focusing on Feasible Greedy, we notice that it is

much more sensitive with respect to Profitable Greedy to the value of ω , with the gap that increases

when the value of ω decreases. This is explained by the fact that when the value of ω is small, then only few

requests may be feasibly accepted, thus acceptance of early arrived requests prevents from serving future,

possibly more profitable, ones. We also notice that Feasible Greedy is very much sensitive to the rules

of generating the probability of customers’ requests, providing a large gap (more than 50%) when all nodes

have a probability of 50%. The reason may be the same mentioned above: when all nodes have the same
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probability of placing a request, an early acceptance may prevent the acceptance of (probable) convenient

future requests. Profitable Look-ahead Greedy and Feasible Look-ahead Greedy show

a very similar behavior. They always outperform the other two heuristics, with Feasible Look-ahead

Greedy being dominant except for the cases where ω = 3/4, M = 0% and F2. Finally, we notice a quite

remarkable variance of the results on the basis of the rules used to generate the profits. In particular, classes

P3 and P4 are the ones for which all myopic greedy algorithms provide the worst results. This may be related

to the fact that, when profits are related to distances, greedy rules based on the evaluation of functions that

depend on the comparison between profits and distances may face more troubles in establishing what is the

best choice.

5.2.2 Myopic versus MC greedy algorithms

In this section, we analyze the benefits of introducing Monte Carlo simulation on the greedy algorithms

evaluated above. The aim is to verify whether the introduction of Monte Carlo to simulate the evolution

of future events helps in providing better quality solutions. Thus, we compare the performance of myopic

versus MC greedy algorithms. In particular, for MC Greedy, we generated 100 scenarios for Step 2 of the

procedure described in Section 4.2.2.

Table II shows the results. In particular, the table reports, for each MC greedy algorithm, the per-

centage gap with respect to the Post-exact solution and the percentage improvement with respect to

the corresponding myopic greedy algorithm (‘impr.’). Table II shows that the improvement due to the in-

troduction of Monte Carlo simulation is high, especially when focusing on Profitable Greedy and

Feasible Greedy. This can be safely attributed to the fact that these two heuristics are those which pro-

vide the worst results in their myopic version, and thus there is a much wider space for improvement in their

case. Overall, MC provides big advantages to all greedy algorithms by remarkably smoothing the gaps with

respect to Post-exact. In fact, focusing on Profitable Look-ahead Greedy and Feasible

Look-ahead Greedy, we see that the gap is always lower than 12% except for one case (ω = 1/4).

In Table III, we show the average computational time over all instances for all greedy approaches: the

four myopic approaches and the four MC approaches with 100 scenarios. Times are reported in milliseconds

(ms). The table shows that, even if the effort due to scenario evaluation is substantial, still computational

times are absolutely acceptable. In fact, while they are at most 26ms for myopic approaches, the highest

average computational time for MC approaches is 305ms for MC Feasible Look-ahead Greedy

21



MC Profitable MC Feasible MC Profitable MC Feasible
Greedy Greedy Look-ahead Look-ahead

Greedy Greedy
gap impr. gap impr. gap impr. gap impr.

ω = 1/4 13.34 20.19 15.04 30.79 12.48 16.77 12.11 10.95
ω = 1/2 9.34 27.45 9.60 27.51 8.21 12.73 7.63 12.70
ω = 3/4 5.19 31.21 7.08 13.47 4.74 10.90 4.63 12.48
M = 0% 12.87 58.85 15.24 36.43 10.87 23.55 10.65 24.93
M = 25% 6.06 6.27 6.59 14.09 6.05 6.19 5.62 3.83
F1 7.94 26.10 8.53 19.50 7.34 14.90 7.14 14.11
F2 11.93 9.59 21.00 29.18 11.57 8.23 11.70 8.26
F3 8.27 26.03 8.89 19.90 7.66 15.80 7.51 15.51
F4 8.93 31.58 9.49 25.62 7.82 11.21 7.18 9.75
P1 8.18 26.37 8.96 20.27 7.34 11.28 7.09 11.52
P2 7.74 19.47 9.11 27.45 7.11 8.38 6.76 6.58
P3 9.71 32.08 11.13 21.58 8.82 16.88 8.42 15.95
P4 9.68 32.06 11.16 21.68 8.81 16.89 8.41 15.94
All 8.76 27.05 10.01 22.92 7.96 13.05 7.61 12.17

Table II: MC versus myopic greedy algorithms

Myopic MC
Profitable Greedy 20 103
Feasible Greedy 26 110
Profitable Look-ahead Greedy 24 140
Feasible Look-ahead Greedy 21 305

Table III: Computational time of greedy algorithms (ms)

which is still extremely fast.

In Table III, we note a counter-intuitive fact: while in the myopic version Profitable Look-ahead

Greedy is slightly slower than Feasible Look-ahead Greedy, in the Monte Carlo version the for-

mer algorithm is much faster than the latter. We explain this phenomenon as follows. Under the same

conditions, a request accepted by Feasible Look-ahead Greedy is accepted also by Profitable

Look-ahead Greedy, but not vice versa. Hence, Profitable Look-ahead Greedy accept more

requests at the beginning of the decision time window (0,T ) and might reduce more quickly the time budget

for future requests. The smaller time budget imply that the simulations stop earlier, as no simulation is run

if a node cannot be feasibly inserted in the current path. This produces sensible time savings.

Given that Feasible Look-ahead Greedy provides a good compromise between solution quality

and computational time and is the best greedy algorithm, in the following analysis we focus on it and do not
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Figure 3: Comparison of Feasible Look-ahead Greedy and MC Feasible Look-ahead
Greedy with different number of scenarios (scens).

provide further analysis related to the other greedy approaches.

One crucial decision in MC greedy approaches is the number of scenarios generated. Thus, we now

analyse the performance of the MC Feasible Look-ahead Greedy on the basis of this parameter. In

Figure 3 we report the average solution value of the Feasible Look-ahead Greedy, MC Feasible

Look-ahead Greedywith 10, 50, and 100 scenarios and the Post-exact solution. What is interesting

to notice is that the advantage to the MC Feasible Look-ahead Greedy with respect to Feasible

Look-ahead Greedy is achieved already with 10 scenarios.

We remark that a similar analysis has been performed also on the other greedy algorithms and the results

showed a similar trend.

5.2.3 Comparison of static and dynamic approaches

In this section, we analyze the performance of all approaches illustrated in Section 4. As mentioned above,

from the class of greedy algorithms, we choose the Feasible Look-ahead Greedy as a good com-

promise between solution quality and computational time. Thus, in the following we illustrate the results

related to the following solution approaches:

• OP-One-Shot.

• OP-Multi-Shot.
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• Feasible Look-ahead Greedy.

• MC Feasible Look-ahead Greedy with 100 scenarios. Even if we noticed in the previous

section that the results with 10 scenarios are similar to the ones with 100 scenarios, given the extremely

low computation time of MC Feasible Look-ahead Greedy with 100 scenarios, we kept this

setting as it is the one that provides the best results.

• MC OP-Multi-Shot with 10 scenarios. In this case, we choose a number of scenarios equal to

10 as MC OP-Multi-Shot is much more time consuming than MC Feasible Look-ahead

Greedy. We will analyse more in depth this issue in the following.

First, we focus on the comparison between MC OP-Multi-Shot and MC Feasible

Look-ahead Greedy. In particular, we analyze the average solution quality to determine which ap-

proach is performing better. In Figure 4, we show the average solution value, over all instances, of MC

OP-Multi-Shot and MC Feasible Look-ahead Greedy with 10 and 100 scenarios respectively.

The figure shows that the best approach among the three is MC Feasible Look-ahead Greedy with

100 scenarios, but the difference is very limited. In addition, MC Feasible Look-ahead Greedy

with 10 scenarios performs better than MC OP-Multi-Shot, which has the same number of scenarios.

This may be due to the fact that, even if MC feasible Look-ahead Greedy is based on a simple

decision rule, the advantage of taking into account the time at which events occur overcomes the more

sophisticated decision rule applied in MC OP-Multi-Shot.

Extending the comparison to the remaining approaches listed above, we obtain the results presented in

Table IV. The table reports the gap with respect to the solution of the Post-exact algorithm categorized

as done in the previous tables.

Table IV shows that the best approach is MC Feasible Look-ahead Greedy which systemati-

cally outperforms all other approaches on all instance classes. The worst approach is OP-One-Shot. This

was expected as OP-One-Shot is a static approach which determines a solution at time 0 and decisions

are based on this solution without taking into account updated information. In addition, OP-One-Shot

behaves particularly bad for the class of instances F2, where all optional nodes have a probability equal to

0.5 of placing a request. This is the class of instances that generates the worst performance also for the other

approaches, and this is due to the fact that this case generates the highest error in predicting which customers

will place a request. However, this disadvantage is amplified in OP-One-Shot due to its static nature.
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Figure 4: Comparison of MC Feasible Look-ahead Greedy and MC OP-Multi-Shot.

OP-One-Shot OP-Multi-Shot MC Feasible MC OP-Multi-Shot
Look-ahead

Greedy

ω = 1/4 23.45 15.20 12.11 16.51
ω = 1/2 21.87 14.89 7.63 10.07
ω = 3/4 20.31 13.00 4.63 5.69
M = 0% 32.83 25.74 10.65 13.47
M = 25% 14.38 6.72 5.62 7.76
F1 25.76 17.91 7.14 8.79
F2 60.98 20.57 11.70 14.46
F3 27.30 19.03 7.51 8.99
F4 8.34 7.95 7.18 10.54
P1 20.03 12.02 7.09 9.33
P2 18.26 10.69 6.76 9.05
P3 24.61 17.64 8.42 11.00
P4 24.72 17.63 8.41 10.98
All 21.67 14.24 7.61 10.02

Table IV: Performance of static and dynamic approaches with respect to Post-exact
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OP-One-Shot OP-Multi-Shot MC Feasible MC OP-Multi-Shot
Look-ahead

Greedy

ω = 1/4 8 302 140 278
ω = 1/2 14 503 332 680
ω = 3/4 19 437 445 579
M = 0% 5 291 297 663
M = 25% 23 537 314 361
F1 12 359 305 280
F2 4 112 76 28
F3 11 352 297 273
F4 28 832 544 1467
P1 16 506 321 567
P2 14 429 305 486
P3 13 362 298 500
P4 13 359 298 496
All 14 414 305 512

Table V: Computational times (ms)

Concerning the comparison between OP-Multi-Shot and MC OP-Multi-Shot, we see that the latter

performs better with the exception of few cases, i.e., ω = 1/4, M = 25% and F4.

Finally, in Table V we present the average computational times (in ms) of the approaches analyzed in

Table IV, with the same classification of instances.

All computational times are absolutely reasonable being at most slightly above half a second.

OP-One-Shot has a computational time of few ms. However, as it is shown in Table IV, this goes

to the detriment of solution quality. Among the three other approaches, the fastest is MC Feasible

Look-ahead Greedy which confirms to be the best both in terms of solution quality and computational

time.

6 Conclusions

We have studied a dynamic and probabilistic OP, called DPOP, where decisions about acceptance/rejection

of nodes must be taken one at a time, according to the probabilistic appearance of new requests. Given

the set of assumptions, we have derived explicit formulas for the optimal policy according to the objective

of expected profit maximization. To give practical decision methods, we have designed and implemented

different heuristic techniques according to three approaches: static (i.e., using a fixed, a priori view of the
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future evolution), myopic (i.e., without anticipation of future events), anticipatory (i.e., based on SAA of the

objective function through Monte Carlo simulation of future events). Computational tests have shown that

simple anticipatory approaches are superior to myopic and static approaches.

The special feature of DPOP is the fact that acceptance/rejection decisions have to be made in real time

but before the vehicle starts its route. Hence, the set of accepted nodes and the whole sequence of visits

must be updated each time a new request is accepted. We believe that this feature may be relevant in several

application contexts.

The present work may be extended along at least two directions. First, a richer environment may be

considered, including multiple vehicles, capacity constraints, and customer time windows. This would not

impact the decision framework, but it would force the adoption of more sophisticated algorithmic approaches.

Second, a different management of the decision time interval (0,T ) could be considered. To model an online

decision process, we have considered time as a continuous parameter. In many applications however, time

is considered as a discrete parameter. If time is discretized in equally spaced decision epochs, multiple

simultaneous service requests must be taken into account. Thus, considering time as a discrete parameter

would impact both the theoretical modeling and the algorithmic approaches.

A Proof of Theorem 1

We start introducing some notations. For all i ∈VS and all t? ∈ (0,T ), let Fi|t? denote the CDF of the random

variable Ti, given that no request has occurred from i in [0, t?]. For all t ∈ (t?,T ), we have:

Fi|t?(t) =
θi(F i(t)−F i(t?))

1−θiF i(t?)
(7)

(see (5)). Moreover, we have:

Fi|t?(t) =


0 if t ≤ t?,

θi−Fi(t?)
1−Fi(t?)

= 1−F i(t?)
1/θi−F i(t?)

if T ≤ t < T +1,

1 if t ≥ T +1.

Recall that f i denotes the PDF of T i. Accordingly, let f i|t? denote the PDF of T i, given that no request

27



0 t? T T +1
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Figure 5: Example plot of Fi (solid line) and Fi|t? (dashed line) in the special case where T i is uniform.

has occurred from i in [0, t?]. By deriving (7) we have:

f i|t?(t) =
θi

1−θiF i(t?)
· f i(t) for all t ∈ (t?,T ) (8)

(See Figure 5 for an illlustration.)

To prove the theorem, assume that the proper event (tk+1, ik+1) occurs with system at state (tk,Rk,W k).

First, we prove that equation (3) defines the probability that the next event will be proper and will involve

node i ∈V\Rk+1.

Let i ∈ V\Rk+1 and let t ∈ (tk+1,T ). From the independence assumption and using (7), the probability

that Tj > t for all j ∈V\(Rk+1∪{i}) is

∏
j∈V\(Rk+1∪{i})

(
1−Fj|tk+1(t)

)
= ∏

j∈V\(Rk+1∪{i})

1−θiF j(t)
1−θiF j(tk+1)

.

From the law of total probability, the next event will be proper and involve i ∈V\Rk+1 with probability

∫ T

tk+1

[
∏

j∈V\(Rk+1∪{i})

1−θiF j(t)
1−θiF j(tk+1)

]
f i|t?(t)dt.

Thus, equation (3) follows from (8).

Second, we prove that (4) defines the probability that the next event will be the final event. The next
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1−ϕi

ϕi

1

Figure 6: Example plot of F̂i|T−t? (solid line) in comparison with Fi|t? (dashed line) in the special case where
T i is uniform. We use ϕi to denote Fi|t?(T ).

event is the final event if ti = T +1 for all i ∈V\Rk+1. Since

P(ti = T +1|ti > tk+1) = 1−Fj|tk+1(T ),

we have that equation (4) follows from the independence assumption.

Finally, we prove that the probabilities computed as in (3) and (4) form indeed a probability distribution,

i.e.,

∑
i∈V\Rk+1

pmin(i|tk+1,Rk+1)+ pmin( /0|tk+1,Rk+1) = 1 (9)

By using the conditioned distributions, we may write:

pmin(i|tk+1,Rk+1) =
∫ T

tk+1

[
∏

j∈V\(Rk+1∪{i})

(
1−Fj|tk+1(t)

)]
f i|tk+1(t)dt (10)

pmin( /0|tk+1,Rk+1) = ∏
j∈V\Rk+1

(
1−Fj|tk+1(T )

)
For convenience, for all i ∈ V\Rk+1, we consider the mixed random variables T̂i = T − Ti. Given a

t? ∈ (0,T ), for all t ∈ [t?,T ] we define:

F̂i|T−t?(T − t) = P(T̂i ≤ T − t|T̂i < T − t?).

29



We have:

F̂i|T−t?(T − t) = P(T −Ti ≤ T − t|T −Ti < T − t?)

= P(Ti ≥ t|Ti > t?)

= 1−P(Ti ≤ t|Ti > t?) = 1−Fi|t?(t)

Moreover, for all t ∈ (t?,T ),

f̂i|T−t?(T − t) =
d

d(T − t)
F̂i|T−t?(T − t) =− d

dt
(1−Fi|t?(t)) = f i|t?(t)

(See Figure 6 for an illustration.) Thus, equation (10) can be written

pmin(i|tk+1,Rk+1) =
∫ T

tk+1

[
∏

j∈V\(Rk+1∪{i})

(
F̂j|T−tk+1(T − t)

)]
f̂i|T−tk+1(T − t)dt

=
∫ tk+1

T

[
∏

j∈V\(Rk+1∪{i})

(
F̂j|T−tk+1(T − t)

)]
f̂i|T−tk+1(T − t)d(T − t)

=
∫ T−tk+1

0

[
∏

j∈V\(Rk+1∪{i})

(
F̂j|T−tk+1(x)

)]
f̂i|T−tk+1(x)dx

Applying integration by parts to the last expression, we obtain:

pmin(i|tk+1,Rk+1) =

[
∏

j∈V\Rk+1

F̂j|T−tk+1(x)

]T−tk+1

0

− ∑
h∈V\(Rk+1∪{i})

∫ T−tk+1

0

[
∏

j∈V\(Rk+1∪{h})

(
F̂j|T−tk+1(x)

)]
f̂h|T−tk+1(x)dx

= 1− ∏
j∈V\Rk+1

(
1−Fj|tk+1(T )

)
− ∑

h∈V\(Rk+1∪{i})
pmin(h|tk+1,Rk+1)

= 1− pmin( /0|tk+1,Rk+1)− ∑
h∈V\(Rk+1∪{i})

pmin(h|tk+1,Rk+1)

This proves equation (9) and completes the proof.
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