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Abstract

Over the last decade, there has been a resurgence of interest in artificial intel-
ligence (AI) applications in medicine. Driven by the advent of deep-learning
algorithms, Al is poised to become a transformational force in healthcare.

However, most of the deep learning literature published in computer science
journals nowadays lacks the depth to be considered helpful to real applications in
the medical field. Researchers make dramatic claims that are often not tested in
a clinical setting, therefore rendering such publications more proof-of-concept
than legitimate scientific studies. More and more experts are pushing back
against the Al hype, pointing out that many alleged advances in the field are
based on flimsy evidence. Artificial intelligence has become mired in a hype
cycle which could lead to a second Al winter.

In this presentation, I will discuss the fundamental differences between Al
research in the two aforementioned fields (i.e., computer science and medicine),
providing a general overview of all the steps required to develop and validate Al
pipelines in the context of medical studies. Furthermore, I will briefly discuss
which tools could be borrowed by the computer science (and, more in general,
the engineering) community from the medical field to potentially improve the
quality of the research in these areas.
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Genomics
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Proteomics

Radiomics

Genomics Transcriptomics

Metabolomics



Feature engineering

I!IIlI- Selection Classification
Histogram
Texture & Shape
Expert knowledge
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Ahmed Hosny, Chintan Parmar, John Quackenbush, Lawrence H. Schwartz, and Hugo J. W. L. Aerts

Artificial intelligence in radiology (NatRevCancer, 2018)
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ANATOMY

Toxicity :ithology =

PHYSIOLOGY

METABOLISM

PROTEINS

GENOME \ / \‘

Philippe Lambin, Emmanuel Rios-Velazquez, Ralph Leijenaar, Sara Carvalho, et Al

Radiomics: Extracting more information from medical image using advanced feature analysis (EU Journal of Cancer, 2012)

IMAGING

FUNCTIONAL |ANATOMICAL
IMAGING

MOLECULAR
IMAGING



1) CT imaging

Hugo J. W. L. Aerts, Emmanuel Rios Velazquez, Ralph T. H. Leijenaar, Chintan Parmar, Patrick Grossmann, et Al

1) Feature extraction

1ll) Analysis
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Wavelet

Radiomic features Gene expression

Clinical data
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Decoding tumour phenotype by noninvasive imaging using a quantitative radiomics approach (NatCom, 2014)



Statistics total energy

Shape compactness

Kaplan-Meier radiomics signature

Kaplan-Meier radiomics signature
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Hugo J. W. L. Aerts, Emmanuel Rios Velazquez, Ralph T. H. Leijenaar, Chintan Parmar, Patrick Grossmann, et Al

h (NatCom, 2014)
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& segmentation

PyRadiomics platform

Joost J.M. van Griethuysen, Andriy Fedorov, Chintan Parmar, Ahmed Hosny, et Al.

Computational Radiomics System to Decode the Radiographic Phenotype (Cancer Res, 2017)

Data analysis &
association studies



Radiomics Landmark paper Standardisation

First studies Hugo's study on Image biomarker standardisation
on PubMed Nature Communications for radiomic features

Deep Learning DL in MedIA Al Guidelines

Applications in photographic First studies on IEEE TMI, Al in clinical trials
image classification challenges popping up and protocols
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Benchmarking

Against other methods
(usually, using metrics)
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Data Processing
Well, y'all know this already!

Problem to Solve

What are we implementing
(... and why?)
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Benchmarking

Against other biomarkers
(... more statistics!) @
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Hypothesis Testing
--------- Lots of statistics T

Data Processing QS @
Well, y'all know this already! Hypothesis (clinical)

What are we looking for
--------- and why (biomarkers)



Liver fat from CT
images predicts
overall-survival in
lung-cancer screening
patients

Hypothesis (clinical)

What are we looking for
and why (biomarkers)



Data Processing
Well, y'all know this already!

Usually Al driven but not
necessarily/only

Either develop from

scratch or build on

something already
published
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Show that the developed O
method works adjusting
for clinical covariates
(study and dataset
-specific), subgroup

analyses etc.
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Hypothesis Testing
Lots of statistics
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Benchmarking

Against other biomarkers
(... more statistics!) @

°O
O Show that the developed
method works adjusting
for known biomarkers
(study and dataset
-specific), subgroup

analyses etc.
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Large Varied Real
Datasets Datasets Datasets

Imaging Data + Clinical Data



Medical %@

e Hypothesis testing and generating

e Technical novelty is cool but we don't
really care as long as it (really) works

e Really long times at first (basically
building on top of the technical, so...),
but easier to extend later

e Reviewers will look more at the scientific
soundness of the paper
o Hypotheses (clinical problem)

o Generalisability
o Statistics

Engineering

e Problem solving

e Technical novelty is usually very
important (if not the only thing that
actually matters)!

e Shorter times but harder to extend later
(usually more novelty needed)

e Reviewers mostly care about
improvements over SOTA
o Not a lot of statistics (if any)

o One dataset is usually ok
o No use-cases are usually ok



Medical @ Engineering

Compare to gold standard (validation) Segmentation

=k

Downstream task(s):

e Liver segmentation for fat quantification
(thresholding)

e Coronary Artery Calcium (CAC)
segmentation (and quantification)

e Gamma analysis (RadOnc)

e Simpler biomarkers (e.g., the relative
size of heart chambers from contrast CT
has prognostic power [...])

e Compare to gold standard (benchmark)
e Compare to (re-implemented) SOTA
e Ablation studies




Medical @ Engineering

Compute AUROC Diagnosis/Classification

=k

Downstream task(s):

e Statistical analysis
e Apply the model for eligibility in a trial
(retrospective), see how things change
e Task-dependent clinical study
o Investigate how the Al score
correlates with other -omics data

e Compute AUROC
e Ablation studies




Medical @ Engineering

Compute task-specific metrics |mage Translation (GANs)
(e.g., SSIM, MAE, etc.) + reader test

=k

Downstream task(s):
e Re-planning
e Gamma analysis
e HU analysis
o 00D data
o Different Phantoms

e Compute task-specific metrics
(e.g., SSIM, MAE, etc) + reader test

e Compare to (re-implemented) SOTA
e Ablation studies
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Benchmarking

Against other biomarkers
(... more statistics!) @
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Hypothesis Testing

_________ Lots of statistics &



Table 2 Univariate and multivariable survival analyses of the predictive value of deep learning risV 'ssed in the test cohorts.

Risk groups Events?

HR 95% CI P value

NLST: = — 14 OEO. anmbns ACAVN danbh w200
Adjusted for age, sex, diabetes, hypertension, past heart-disease,

Martingale resi past stroke

Very | n/a Reference Reference
Low o 157 0.96-2.57 0.069
Mode - 279 1.70-4.57 <0.001
High 3.87 2.45-61 <0.001
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= Adjusted for Framingham Risk Score
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per day) Cox PH mode..
0 1 3 4 6
Time (Years)
Number at risk Number at risk CACgroup  Very Low Low Moderate High
Very Low 3613 3596 3577 3532 3496 3451 2961 Very Low 1615 1498 942 342 ACS=0 [n(%)] 256 (98.5) 105(89.0) 27(79.4) 15(51.7)
4730 4706 4665 4614 4552 4492 3820 1264 1150 713 234 ACS=1[n(%)]  4(15)  13(11.0) 7(206) 14 (483)

Moderate 2373 2352 2320 2294 2254 2216 1872 Moderate 557 507 312 96

High 4243 4190 4129 4054 3955 3847 3231 High 585 530 325 107 Total 260 18 34 29



Research

Some of our
research




DL in Medical Imaging

s © =2

Data Mining Diagnostics Automation
Mine the unknown. Quantify the known. Automate extraction.
New biomarkers From qualitative to Well known biomarkers

discovery quantitative extraction automation



DL in Medical Imaging

s

Try to extract information doctors don’t really know
how to mine (new biomarkers, always based on loose
biological hypotheses anyway)

Data Mining
E.g., from Chest X-Rays:

Mine the unknown. e Deterioration of a patient with COVID (FB Al)
e Screening eligibility of heavy smokers

New biomarkers
discovery — hypothesis generating studies



A CXR-Age Developed in 116,035 individuals.

Input: Chest X-ray image CXR-Age
convolutional neural network

LACT

B CXR-Age Validated for All-Cause and CV Mortality in PLCO (N = 40,967) and NLST (N = 5,414).
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Kaplan-Meier survival by CXR-Age and chronological age in the PLCO test dataset

Vineet K. Raghu, Jacob Weiss, Udo Hoffmann, Hugo J. W. L. Aerts and Michael T. Lu.

Deep Learning to Estimate Biological Age From Chest Radiographs (JACC, 2021)



information doctors use for clinical
decision making (based on strong

DL in Medical Imaging

Try to quantify qualitative

biological hypotheses)

E.g., from CT scans:

Predict treatment response
Predict survival of patients
with lung lesions

From Chest X-Rays:

COVID diagnose/severity

©

Diagnostics

Quantify the known.

From qualitative to
guantitative

— hypothesis testing studies
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Stefano Trebeschi, Zuhir Bodalal, Thierry N. Boellaard, Teresa M. Tareco Bucho, Silvia G. Drago, leva Kurilova, et Al

Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy (Front. Oncol, 2021)
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Stefano Trebeschi, Zuhir Bodalal, Thierry N. Boellaard, Teresa M. Tareco Bucho, Silvia G. Drago, leva Kurilova, et Al.

Prognostic Value of Deep Learning-Mediated Treatment Monitoring in Lung Cancer Patients Receiving Immunotherapy (Front. Oncol, 2021)



DL in Medical Imaging

Automate the extraction of information doctors know how
to quantify (well known biomarkers) but often cannot due
to time constraints

E.g., from CT scans:
e Liver fat quantification
e Coronary Artery Calcium segmentation

— clinical integration, biomarker validation studies

o8
Vv

Automation
Automate extraction.

Well known biomarkers
extraction automation



Deep Learning System
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Coronary Artery
Calcium Score

@

Train / Tune Heart Heart Calcium
Cohort Localization Segmentation Segmentation
Asymptomatic Population
FHS-CT1 n=1,636 FHS-CT2 n=663

« Community-based observational study

« Participants from Offspring Cohort, seventh
examination cycle or Third Generation
Cohort, first examination cycle (2002-05)

* Dedicated ECG-gated cardiac CT scans

Clinical Performance
Assessed the performance of the
deep learning system to predict
cardiovascular events in all
independent test cohorts

« Community-based observational study

« Participants from Third Generation Cohort, second
examination ciclye (2008-11)

« Dedicated ECG-gated cardiac CT scans

* No overlap to participants from FHS-CT1

« Segmentations from expert readers

NLST n=14,959
« Lung screening trial in asymptomatic heavy smokers

« Participants from CT imaging arm

« Low-dose non contrast-enhanced chest CT scans

« Outcome: ASCVD death

« Available outcome data (6.7 years)

Clinical Risk Factors
Compared the results of the deep
learning system with other clinical
risk factors in all independent test
cohorts

Expert Readers

[+

n=5,521

5,521 participants

Compared the performance of the
deep learning system with
assessments of expert readers on

Symptomatic Population

n=4,021

PROMISE

« Patients with stable chest pain

« Patients from CT testing arm

* Dedicated ECG-gated cardiac CT scans
» Outcome: All-cause mortality

« Available outcome data (25 months)

ROMICAT-II n=441
« Patients with acute chest pain

« Patients from CT testing arm

* Dedicated ECG-gated cardiac CT scans

» Outcome: ACS

« Available outcome data (28 days)

Test-Retest

Assessed the robustness of the deep
learning system using test-retest
analysis on participants that received
two scans within one hour

Roman Zeleznik, Borek Foldyna, Parastou Eslami, Jakob Weiss, Ivanov Alexander, Jana Taron, Chintan Parmar, et Al.

Deep convolutional neural networks to predict cardiovascular risk from computed tomography (NatCom, 2021)



a Survival analysis of CAC groups in NLST test cohort b Survival analysis of CAC groups in PROMISE test cohort ¢ ACS rate across CAC groups in ROMICAT-II test cohort
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Very Low 3613 3596 3577 3532 3496 3451 2961 Very Low 1615 1498 942 342 ACS=0[n(%)] 256 (98.5) 105(89.0) 27 (79.4) 15(51.7)
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Roman Zeleznik, Borek Foldyna, Parastou Eslami, Jakob Weiss, Ivanov Alexander, Jana Taron, Chintan Parmar, et Al.

Deep convolutional neural networks to predict cardiovascular risk from computed tomography (NatCom, 2021)
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“There are three kinds of lies: lies, damned lies, and statistics”



Survival analysis techniques in SP/Network Engineering!

Kaplan-Meier

< Treatment =A -} Treatment =B

1.01
0.91
20.81
5 0.71
g 0.6 1
<}
SN e i — 7 O gy
T 0.4 ]
§ 0.31 Log-rank
® 0.21 p <0.0001
0.1
0.01
0 12 24 36 48
Time

Number at risk (number censored)

== 100 (0) 75 (7) 49 (16) 24 (24) 3(36)
== 100 (0) 83 (6) 70 (11) 54 (18) 29 (57)

Algorithm A VS Algorithm B

Event: error of some sort
Time: time, transmissions, distance
Survival prob: packet loss



Survival analysis techniques in SP/Network Engineering!

Which variables play a role regarding

An algorithm performance (and how much)

Event: error or some sort

Time: time, transmissions, distance
Survival prob: packet loss

Covariates: different scenarios/setups

Cox Regression

Recurrence only

Variable Hazard ratio (95% ClI) P
Age group, y
65-69 1.00
70-74 0.91 (0.87-0.97) 0.001
75-79 0.70 (0.66-0.74) <0.001
AJCC stage
| 1.00
Il 1.27 (1.21-1.33) <0.001
mn 2.04 (1.88-2.22) <0.001
ER/PR status
Positive® 1.00
Negative 1.17 (1.09-1.25) <0.001
Unknown 0.91 (0.85-0.96) 0.002
Histologic grade
Well 1.00
Moderate 1.22 (1.12-1.31) <0.001
Poor 1.30 (1.20-1.41) <0.001
1.12 (1.03-1.21) 0.007

Unknown




