Variations on the Erdős distinct-sums problem

Stefano Della Fiore
University of Salerno (Italy) - Department of Computer Science
University of Brescia (Italy) - Department of Information Engineering
(Joint work with Simone Costa and Marco Dalai)

Abstract

Let $\left\{a_{1}, \ldots, a_{n}\right\}$ be a set of positive integers with $a_{1}<\ldots<a_{n}$ such that all 2^{n} subset sums are distinct. A famous conjecture by Erdős states that $a_{n}>c \cdot 2^{n}$ for some constant c, while the best result known to date is of the form $a_{n}>c \cdot 2^{n} / \sqrt{n}$. In this talk, we give an overview on the different methods that have been used, during the past years, to provide some nontrivial lower bounds on a_{n} (see [2, 3, 4]). Then, inspired by an information-theoretic interpretation, in [1], we extend the study to vector-valued elements $a_{i} \in \mathbb{Z}^{k}$ and we weaken the condition by requiring that only sums corresponding to subsets of size smaller than or equal to λn be distinct. For this case, we derive lower and upper bounds on the smallest possible value of a_{n}.

Keywords: Erdős distinct-sums problem, polynomial method, probabilistic method MSC: 05D40, 11B13

References

[1] S. Costa, M. Dalai and S. Della Fiore, Variations on the Erdős distinct-sums problem, Discr. App. Math. 325 (2023), 172-185.
[2] N. D. Elkies, An improved lower bound on the greatest element of a sum-distinct set of fixed order, J. Combin. Theory Ser. A 41 (1986), 89-94.
[3] P. Erdős, Problems and results in additive number theory, Colloque sur la Theorie des Nombres, Bruxelles (1955), 127-137.
[4] Quentin Dubroff, Jacob Fox and Max Wenqiang Xu, A note on the Erdős distinct subset sums problem, SIAM J. Discret. Math. 35 (2021), 322-324.

