PROFIT SHARING AND INVESTMENT BY
REGULATED UTILITIES: A WELFARE
ANALYSIS

by
Michele Moretto
Paolo M. Panteghini
Carlo Scarpa

Discussion Paper n. 0611
Profit sharing and investment by regulated utilities: a welfare analysis*

Michele Moretto† Paolo M. Panteghini‡
Carlo Scarpa§

Dipartimento di Scienze Economiche
Università di Brescia
Via S. Faustino, 74b
25122 Brescia (Italy)

April 11, 2006

Abstract
We analyse the effects of different regulatory schemes (price cap and profit sharing) on a firm’s investment of endogenous size. Using a real option approach in continuous time, we show that profit sharing does not delay a firm’s start-up investment relative to a pure price cap scheme. Profit sharing does not necessarily affect total investment either, if the threshold for profit sharing is high enough. Only a profit sharing intervening for low profit levels may delay further investments. We also evaluate the effects of profit sharing on social welfare, determining the level of profit that should optimally trigger tighter regulation: profit sharing should be less stringent in sectors where investment opportunities are larger.

JEL Classification: L51, D81, D92, G31
Keywords: regulation, investment, profit sharing, real options, RPI-x.

*The authors wish to thank Andreas Wagener for helpful comments and participants to the CESifo Area Conference on Public Sector Economics held in Munich in April 2005.
†University of Padova.
‡University of Brescia and CESifo.
§University of Brescia.
1 Introduction

The performance of regulated utilities has raised concern about how to reconcile consumers’ protection and the incentive to invest. The most popular solution among regulators is the (by now traditional\(^1\)) \(RPI - x\) scheme, which makes the regulated price insensitive to cost-reducing investments: in this way, firms which reduce their costs are not immediately penalized. However, sometimes this rule allows the firm to keep huge profits, and there are now many cases where price cap regulation is modified with an earnings sharing clause, whereby if profits are too high there is an automatic mechanism which revises prices, to the benefit of consumers (Sappington, 2002). On the other hand, such a redistribution of benefits from the firms to the consumers has been accused of decreasing the incentive to invest (among others, Weisman (1993) or Lyon (1996) and Mayer and Vickers (1996)), although the evidence is quite mixed\(^2\).

Our paper contributes to this debate using modern investment theory, which stresses the importance of irreversibility, and calls for a set-up where investment timing and uncertainty play a substantial role. While previous theoretical results show that profit sharing decreases the incentive to invest, the results we obtain may explain the ambiguity of the empirical evidence, in that we show that profit sharing schemes may or may not decrease investment, depending on the actual level of profit which triggers profit sharing.

An additional contribution of the paper is that we carry out a fully-fledged welfare analysis which allows us to identify when the potential losses from profit sharing (delayed investment) are more than compensated by the gains in terms of allocative efficiency and welfare distribution (higher consumer surplus). The optimal level at which profit sharing should intervene can thus be characterised. As long as marginal productivity of capital does not decrease too slowly, profit sharing is always optimal even if it delays investment. Profit sharing should intervene at higher levels of profit when investment opportunities are larger and when the weight of profits in the welfare function

\(^1\) According to this scheme, the regulated price should start from a given level, and then increase at a rate equal to the difference between the expected inflation rate (the Retail Price Index, \(RPI\)) and an exogenously given component \((x)\). See Beesley and Littlechild (1989).

\(^2\) See e.g. Ai and Sappington (2002) and Gasmi et al. (1999). The fact that in several cases profit sharing may lead to greater efficiency relative other forms of regulation (e.g., a pure price cap) raises a problem, given that the existing theory indicates otherwise.
is higher.

This paper is linked to two streams of literature. The first one is the traditional theory of investment under regulation, where investment ("effort") is modelled in a static framework where the firm perfectly knows the return from its investment (e.g., Laffont and Tirole, 1986). The same approach was taken by several papers which compare price caps and profit sharing rules, showing that a pure RPI \(- x\) system provides better incentives to invest relative to a price cap with profit sharing (e.g., Lyon, 1996).³

However, while investment in managerial effort is typically reversible, investment in physical assets is not. When irreversibility matters, a static model is no longer appropriate and the decision to invest should be modelled in a dynamic framework, where the option value of investment is explicitly considered. We operate along this line, and we show that what matters to investment is not profit sharing per se, but the profit level which triggers profit sharing: a "soft" profit sharing constraint does not reduce the incentive to invest.

The second stream of literature is the one on investment and irreversibility (Dixit and Pindyck, 1994), which introduces real options. However, only a few articles in this area derive policy implications using this setting. A notable exception is Dixit (1991), who shows that a price ceiling affects one-off investment strategies by perfectly competitive firms only if it is low enough. Although consistent with our result, Dixit’s finding does not refer to a monopoly and especially it does not include an earnings sharing clause in the price constraint.

Real option techniques are used more and more in analysing regulated sectors. For instance, Hausman and Myers (2002) claim that over the 1997-2000 period the revenues of the three major U.S. railroads were inadequate, since the existing regulatory constraint did not take correct account of sunk costs and irreversible investment. A similar point is made by Pindyck (2004),⁴ who criticizes the U.S. Telecommunications Act of 1996 as it “ignores the basic fact that sunk costs do matter in decision-making when those costs have yet to be sunk” [p.12]⁵. Another interesting contribution is Teisberg

³Weisman (1993) shows that when price cap rules incorporate an element of profit sharing, price caps may even represent a worsening relative to a pure cost based regulation, a notoriously inefficient set-up.

⁴On this point see also Evans and Guthrie (2005).

⁵There is also mounting evidence of how much real options can affect investment decisions in the energy sector. See e.g. Keppo and Lu (2003), Saphores et al. (2004),
(1993), who studies rate of return regulation. More recently, Panteghini and Scarpa (2003a) use a simple framework to show that modifying a price cap with an element of profit sharing does not affect the incentive to make an investment of given amount. However the above articles are based on the assumption that the investment size is exogenous.

Along this line, a particularly relevant paper is Dobbs (2004), which analyses price cap regulation of a firm endowed with market power, and shows that a monopoly firm generally under-invests. While Dobbs concentrates on the effects of an optimal price cap, here we compare different regulatory schemes. In this set-up, we investigate how the two regimes we consider affect investment. Moreover, we perform a welfare analysis, which allows us to derive optimally the profit level which should trigger earnings sharing.

The paper is organised as follows. The next section introduces the basic continuous time model. Section 3 considers an investment of endogenous size, and analyses the effects of the two regulatory regimes on investment. Section 4 provides the welfare analysis, while the final section summarizes the results and discusses possible extensions.

2 The model

In order to study investment and its relationship with both uncertainty and irreversibility, we need a model which includes a stochastic element and where time plays an explicit role. This requires the use of a dynamic stochastic model, which may be formally complex, but is however necessary to study both uncertainty and irreversibility. Following an established literature\(^6\), we thus apply a continuous time model of investment for a firm, subject to a regulatory constraint on its price. The following assumptions are introduced.

Demand Market demand at time \(t\) is an isoelastic function of price \(p_t\)

\[
q(p_t; \gamma_t) = \gamma_t p_t^{-\eta},
\]

with \(\eta > 0\). The parameter \(\gamma_t > 0\) is stochastic and follows a geometric Brownian motion

\[
d\gamma_t = \sigma_t \gamma_t dz_t,
\]

\(^6\)The traditional reference on this is the book by Dixit and Pindyck (1994).
where σ_q is the variance parameter, and $d z_t$ is the increment of a Wiener process satisfying the conditions that $E(dz_t) = 0$ and $E(dz_t^2) = dt$.

The firm Only one firm operates in this market. Its payoff is

$$\Pi_t = \Psi(K_t)p_t q_t$$

(3)

where $K_t \in (0, K]$ is the firm’s asset or “capital”, with K representing the upper limit of capital accumulation. Function $\Psi(K_t)$ describes the effects of capital accumulation on the firm’s profitability. This term can be thought of as a mark up, so that investment can be interpreted either as cost-reducing or as quality enhancing. On this term we assume $\Psi(0) = 0$, $\Psi(K) \leq 1$, $\Psi_K > 0$. Further, we complete the properties $\Psi(.)$ assuming that $\Psi_{KK} < 0$.

In most real-world settings, firms operating in regulated markets may face both institutional and technological limits to their ability to expand capacity. This is why we assume that the firm has the opportunity to expand capital up to K. For simplicity we assume that capital does not depreciate.

Regulation The monopolist is subject to price regulation, and we consider two alternatives. The basic one is an $RPI - x$, whereby if the firm starts producing at time zero, the initial price $p_0 > 0$ is given, and price dynamics are defined by the difference between the inflation rate (changes in the retail price index, RPI) and an exogenous factor x_t:

$$p_t = p_0 e^{(RPI-x_t)t}.$$

(4)

The second alternative we consider is profit sharing, which entails that when profits reach a given threshold, Π, a higher x factor applies. Profit sharing is therefore defined as a modification of (4), as follows

$$p_t = p_0 e^{(RPI-x_j)t} \text{ where } x_j = \begin{cases} x_l & \text{if } \Pi \leq \Pi, \\ x_h & \text{if } \Pi > \Pi, \end{cases}$$

(5)

with $x_l < x_h$. These parameters are known in advance by all market participants, and they are set irreversibly.

7 For a discussion on limited expandability, see Dixit and Pindyck (2000).
8 There are other possibilities to model profit sharing; see Sappington and Weisman (1996) and Schmalensee (1989) for (qualitatively analogous) formulations.
Profit dynamics Investment decisions are driven by profits. Given the stochastic nature of demand (2), current profits include all relevant information about future profitability and are thus crucial in inducing a firm to invest. Therefore, it becomes very important to analyse how profits evolve over time.

To this end, we first derive the dynamics of the demand function. Given (1), (2) (4) and (5), it is straightforward to obtain

\[dq_t = \alpha_{qj} q_t dt + \sigma_q q_t dz_t, \quad (6) \]

where \(\alpha_{qj} \equiv -\eta (RPI - x_j), \ j = l, h. \) Defining firm’s revenues as \(\Theta_t \equiv p_t q_t, \) using equations (3), (4) and applying Itô’s lemma, as shown in the Appendix, we can finally write the profits’ dynamics as

\[d\Pi_t = \Psi(K(t))\Theta(t)dK + \Psi(K(t))d\Theta(t) \equiv \Gamma(K_t)\Pi_t dK_t + \Pi_t[\alpha_j dt + \sigma dz_t], \quad (7) \]

where \(\alpha_j \equiv (1 - \eta) (RPI - x_j) \) is the expected growth rate, \(\sigma = \sigma_q \) is the standard deviation, while \(\Gamma(K_t) \equiv \Psi(K_t)/\Psi(K_t) > 0 \) captures the direct effect of investment on the mark-up. From (7), we can see that in each \(t \) investment affects the level of profit through the marginal mark-up factor, which depends on the stock of capital. In particular if no new investments are undertaken, \(dK = 0 \) and profits are driven only by demand changes and the price cap.

In the next section we will focus on the investment decisions of a regulated firm. For simplicity, hereafter, we will omit the time variable \(t. \)

3 The investment decision

Given that price is regulated, investment is the main decision undertaken by the firm. In this framework - unlike the traditional literature on regulation - investment has two interrelated aspects: how much to invest, and when. The optimal choice by the firm entails a whole investment profile (how much to invest at each point in time). This decision of “capital accumulation” is the main focus of our analysis in this section.

The firm’s problem is one of choosing optimal capital accumulation by maximizing the expected present value of profits \(\Pi(K, \Theta) \equiv \Psi(K)\Theta, \) taking
into account both profit sharing regulation as well as the value of \overline{K}. Defining p_K as the price of capital we can write the firm’s problem

$$V(K, \Theta) = \max_K E_0 \left[\int_0^\infty e^{-rt} [\Pi(K, \Theta) - p_K dK] dt \right] | K_0 = K, \Theta_0 = \Theta,$$

$$s.t. \; dK \geq 0, \text{ with } K \in (0, \overline{K}] \text{ and (7) for all } t.$$

(8)

where $E_0 [.]$ is the expectation operator. Function $V(\cdot)$ is assumed to be twice continuously differentiable.

The expectation in equation (8) is taken with respect to the joint distribution of K and Θ, with Θ driven by (18), conditional on the information available at time zero and taking into account the profit sharing constraint and the irreversibility constraint.

Absent installation costs, the rate of growth of capital is unbounded where dK is the investment process. These expansions are also assumed to be irreversible.\(^9\)

Solving problem (8) we can prove the following:

Proposition 1 The firm invests (increases K) every time current profit goes beyond $\Pi^*(K)$, which is defined as follows:

$$\Pi^*(K) \equiv \begin{cases}
\Pi_{PC}(K) & \text{for } K \in (0, \tilde{K}], \\
\Pi_{PS}(K) & \text{for } K \in (\tilde{K}, \overline{K}].
\end{cases}$$

(9)

where \tilde{K} is the amount of capital such that

$$\Pi_{PC}(\tilde{K}) = \Pi,$$

(10)

and where

$$\rho(x_j) \equiv \left[\frac{\beta_1(x_j)}{\beta_1(x_j)}\right] \delta(x_j), \text{ with } \rho(x_l) < \rho(x_h),$$

$$\beta_1(x_j) = \frac{1}{2} - \frac{r-\delta(x_j)}{\sigma^2} + \sqrt{\left(\frac{1}{2} - \frac{r-\delta(x_j)}{\sigma^2}\right)^2 + \frac{2r}{\sigma^2} > 1},$$

$$\delta(x_j) \equiv r - \alpha_j \text{ for } j = l, h.$$

\(^9\)Technically, this means that, by exercising the option to delay, the firm acquires a compound option to expand, which consists of a continuum of American call options, each for any dK. For any given starting value of capital the firm can exercise a call option to expand capital. After the exercise of such an option, the firm obtains another American call option allowing it to undertake a further increment. The compound option is completely exercised when the firm reaches \overline{K}.

7
Proof. See Appendix.

Proposition 1 describes the effects of regulation on capital accumulation. The interpretation of Proposition 1 is that profit sharing is neutral for low levels of investment ($K < \tilde{K}$). Only incremental investments raising capital beyond \tilde{K} will be delayed.

As shown in Proposition 1, investment depends on x_l and not either on x_h or on the switch point \tilde{K} (and, equivalently on Π).\(^{10}\) As profit sharing does not affect the initial investment decision, the neutrality result found in Panteghini and Scarpa (2003a) in a two period set-up is confirmed.

To better analyse the investment profile over time, it is convenient to make use of Figure 1 below. Notice that while the profit sharing threshold Π is a constant, the optimal investment trigger value $\Pi^*(K)$ is a function of K. Since the marginal profitability of K is decreasing, this function is increasing.

Fig.1

For $K \in (0, \tilde{K})$ the investment function determined in (9) consists of two parts.

The first one, for $K \in (0, \tilde{K}]$, indicates that the firm increases capital when current profits go beyond the trigger point denoted by $\Pi_{PC}(K)$ in (9) for any value of K. This function does not depend on x_h, i.e. does not depend on the existence of a profit sharing scheme (and would thus emerge in the optimal investment policy with a pure price cap).

The second part shows that profit sharing affects investment only when K reaches \tilde{K}. As $\rho(x_h) > \rho(x_l)$, $\Pi_{PS}(\tilde{K}) > \Pi_{PC}(\tilde{K})$. This implies that the level of current profit, required to convince the firm to expand its plant, jumps upwards when $K = \tilde{K}$. Profit sharing, by increasing the value of the current profit beyond which the firm decides to expand its plant, delays further investment.

More precisely, when current profits reach for the first time the threshold Π, K is increased to \tilde{K}. Further marginal increases in Π, however, will not be sufficient to trigger further investments: when current profits happen to be in

\(^{10}\)If Π were below this trigger point, the price scheme would already start with $x_j = x_h$ and the two regulatory regimes would in practice coincide. This would not be a very interesting case, since the two regimes would collapse to a price cap one with x_h. In order to have an actual alternative to price cap, we must assume that Π is larger than the trigger point. In this way, regulation starts with a value of $x_j = x_l$, which is made more stringent at a later stage, in case profit goes beyond Π.

8
the interval \([\tilde{\Pi}; \Pi_{PS}(\tilde{K})]\), the firm will not increase capital beyond \(\tilde{K}\). Given the tighter regulatory constraint, further investments would be justified only when demand is so high, that \(\Pi > \Pi_{PS}(\tilde{K})\). Only at this point will the firm find it optimal to increase \(K\): given that current profit is the best estimate of future profit, for high current profit levels forgiving market opportunities would be too expensive. When \(K\) reaches its maximum level \(\overline{K}\), further investments are impossible and the firm can only produce at the regulated price.\(^{11}\)

If the firm has already a given capital level \(K\) but demand conditions worsen, so that current profit falls below \(\Pi_{PC}(K)\), given irreversibility the optimal policy is not to invest (keeping \(K\) constant). The firm waits until profits move above \(\Pi_{PC}(K)\), and at this point it will invest in order to keep profits in line with the optimal policy curve (9). This happens as long as \(\Pi_{PC}(K) < \Pi < \Pi_{PC}(\overline{K}) = \tilde{\Pi}\), and the new capital level remains below the threshold given by \(\tilde{K}\).

4 Welfare analysis

So far, we have seen that profit sharing may discourage investment if it intervenes for low levels of profit. In terms of social welfare, however, this negative effect may be offset by the positive effect of profit sharing on consumer surplus. In this section, we first determine the net welfare effect of profit sharing regulation. We will then compute the optimal switch level \(\tilde{\Pi}^*\).

The starting point of our welfare analysis is the following standard welfare function:

\[
W(x_l, x_h; \tilde{\Pi}) = S(x_l, x_h; \tilde{\Pi}) + \lambda V(x_l, x_h; \tilde{\Pi}),
\]

where \(S\) is the consumer surplus, \(V\) is the firm’s value and \(\lambda \leq 1\) is the weight of profits in the welfare function (in line with the standard regulation literature since Baron and Myerson, 1982).

Our welfare analysis starts from a basic trade-off. Profit sharing, which entails a quicker decrease in prices, increases consumer surplus. However, unless the threshold \(\tilde{\Pi}\) is very high, profit sharing may delay investment,

\(^{11}\)Quite obviously, if \(\tilde{K} \geq \overline{K}\), profit sharing never interferes with investment decisions and \(\Pi^*(K) = \Pi_{PC}(K)\) for all relevant values of \(K\). In this case, a loose profit sharing constraint would be neutral with respect to investment decisions.
which given the price dynamics has no effect on consumers but does affect the firm’s profit. Is profit sharing desirable? Can we identify an optimal value for \(\bar{\Pi} \)? We try and answer these questions by analysing in turn the two main arguments of the welfare function.

Let us now compute the firm’s value. It is straightforward to show the following.

Lemma 1 For any initial value of \(K < \bar{K} \), the firm’s value may be written as
\[
V(x_l, x_h; \bar{\Pi}) = V^{PC}(x_l) + \Delta V^{PS}(x_l, x_h; \bar{\Pi}),
\]
where \(V^{PC}(x_l) \) is the project value under pure price-cap regulation, and \(\Delta V^{PS}(x_l, x_h; \bar{\Pi}) < 0 \) represents the decrease in firm’s value due to profit sharing.

Proof. See Appendix.

As shown in the Appendix,
\[
\Delta V^{PS}(x_l, x_h; \bar{\Pi}) = A^{PS}(K; x_l, x_h)\Theta^{\beta_1(x_l)},
\]
where \(A^{PS}(x_l, x_h; \bar{\Pi}) \equiv -\epsilon c(\bar{K})\bar{\Pi}^{1-\beta_1(x_l)}, \epsilon \equiv \frac{\delta(x_h)-\delta(x_l)}{\delta(x_l)\delta(x_h)} > 0, \) and \(c(\bar{K}) \equiv \int_{z=K}^{\bar{K}} \Psi_{K}(z)\Psi(z)^{\beta_1(x_l)-1}dz > 0, \) so that \(A^{PS}(x_l, x_h; \bar{\Pi}) < 0 \). The expected loss due to a profit sharing regulation intervenes only as \(\bar{\Pi} \) reaches the threshold \(\bar{\Pi} \). The term \(\epsilon \) represents the effects of the tighter regulation which follows profit sharing. The formula for \(\Delta V^{PS}(x_l, x_h; \bar{\Pi}) \) shows that the loss in the firm’s value is proportional to the expected value of the incremental investments which the firm decides to delay because of profit sharing.

This means that the value of the firm is negatively affected by profit sharing, relative to a pure price cap: it is easy to verify that \(\frac{\partial V^{PS}(K, \Theta)}{\partial \Pi} > 0 \) (a more relaxed profit constraint increases the firm’s value). To some extent, this is natural, in that the very notion of profit sharing comes from the idea that a scheme which yields an excessively imbalanced distribution of rents is undesirable\(^{12} \).

The consumer surplus under profit sharing can be computed considering the present discounted value of the integral below the demand function. Profit sharing affects consumer surplus through its effect on price. Given that profit sharing may or may not take place, depending on whether or not

\(^{12}\)Note that also the rate-of-return regulation scheme, still prevailing in a large part of the US, is based on the idea that restraining monopoly rents is a goal by itself.
profits go beyond \(\tilde{\Pi} \), consumer surplus - analogously to \(V \) - embodies the future value of what can be obtained at a later stage because of profit sharing. As shown in the Appendix, we can prove the following.

Lemma 2 For any given value of \(\tilde{K} < K \), the present value of consumer surplus may be written as

\[
S(x_l, x_h; \tilde{\Pi}) = S^{PC}(x_l) + \Delta S^{PS}(x_l, x_h; \tilde{\Pi}), \tag{13}
\]

where \(S^{PC}(x_l) \) is the consumer surplus under price cap regulation and \(\Delta S^{PS}(x_l, x_h; \tilde{\Pi}) \) is the increase in consumer surplus due to profit sharing.

Proof. See Appendix. \(\blacksquare \)

As shown in the Appendix, \(S^{PC}(x_l) \) is a perpetual rent which depends on price but does not directly depend on \(K \): consumer surplus depends on the regulated price, which in turn depends on the firm’s choices only when they are such to trigger profit sharing. The term

\[
\Delta S^{PS}(x_l, x_h; \tilde{\Pi}) = B^{PS}(x_l, x_h; \tilde{\Pi})\Theta^{\beta_1(x_l)},
\]

with the constant \(B^{PS}(x_l, x_h; \tilde{\Pi}) \equiv \epsilon \left(\frac{\tilde{\Pi}}{\Psi(K)} \right)^{1-\beta_1(x_l)} \), represents the expected value of the increase in the consumer surplus due to profit sharing (and \(\Delta S^{PS}(x_l, x_h; \tilde{\Pi}) = 0 \) for \(x_l = x_h \), when no profit sharing takes place). Given that \(\beta_1(x_l) > 1 \), an increase in \(\tilde{\Pi} \) decreases consumer surplus: if profit sharing takes place “later”, consumers’ welfare is lower. Analogously, an increase in \(x_h \) increases \(\Delta S^{PS}(x_l, x_h; \tilde{\Pi}) \).

Taking account of (12) and (13), the welfare function (11) can be written as

\[
W(x_l, x_h; \tilde{\Pi}) = W^{PC}(x_l) + \Delta W^{PS}(x_l, x_h; \tilde{\Pi}), \tag{14}
\]

where \(W^{PC}(x_l) \equiv S^{PC}(x_l) + \lambda V^{PC}(x_l) \) is the welfare level under pure price-cap and \(\Delta W^{PS}(x_l, x_h; \tilde{\Pi}) \equiv \Delta S^{PS}(x_l, x_h; \tilde{\Pi}) + \lambda \Delta V^{PS}(x_l, x_h; \tilde{\Pi}) \) measures the benefit arising from profit sharing. Profit sharing may or may not be desirable, depending on the sign of \(\Delta W^{PS}(x_l, x_h; \tilde{\Pi}) \), and thus we concentrate on this term. As shown in the Appendix, the following holds

Proposition 2 The net benefit from profit sharing is

\[
\Delta W^{PS}(x_l, x_h; \tilde{\Pi}) = c\tilde{\Pi}^{1-\beta_1(x_l)} \left[\Psi(\tilde{K})^{\beta_1(x_l)-1} - \lambda c(\tilde{K}) \right] \Theta^{\beta_1(x_l)}. \tag{15}
\]
Proof. See Appendix. ■

As shown in Proposition 2, profit sharing may have a positive or negative impact on welfare ($\Delta W^{PS} \geq 0$). In line with intuition, the welfare gain due to profit sharing decreases with λ, i.e., the weight attached to the firm’s profit. For similar reasons, the term $c(K)$, which measures the ability of the possible expansion of investment to decrease costs, also enters with a negative sign. As shown in Proposition 1, profit sharing may delay investment, and when the potential positive effects of investment opportunities are substantial, profit sharing may decrease welfare.

The effect of profit sharing also depends on the actual value of Π, and our analysis allows us to determine the optimal level that should trigger profit sharing. The regulator’s problem is one of choosing

$$\Pi^* = \arg \max \Delta W^{PS} \left(x_l, x_h; \Pi \right).$$

To find a closed-form solution we assume that $\Psi(K)$ is a Cobb-Douglas function, i.e. $\Psi(K) = K^\varepsilon$ with $\varepsilon \in (0, 1)$. As shown in the Appendix, we prove the following:

Proposition 3 Let Π^* be the optimal level of profit, which triggers profit sharing, i.e. the threshold point ensuring the condition

$$MS = MC,$$

where $MS \equiv (1 - \varepsilon) \Psi \left(K \right)^{\beta_1(x_l)-1}$, $MC \equiv \lambda \cdot c \left(K \right)$, and $\tilde{K} \equiv \left[\frac{\lambda c(K)}{1 - \varepsilon} \right]^{\frac{1}{\varepsilon \beta_1(x_l)-1}}$.

If ε is low enough ($\varepsilon < 1 - \frac{\lambda}{\beta_1(x_l)}$) the optimal level of profit Π^* is finite.

Proof. See Appendix. ■

In other terms, if the marginal productivity of investment decreases sufficiently quickly, a regulatory scheme with a profit sharing element is preferable to a pure price cap scheme. On the contrary, when ε is large enough the marginal productivity of capital does not decrease very sharply as K increases, and delaying capital accumulation causes a more substantial welfare loss.

The LHS of (16) measures the marginal consumer surplus (MS), while the RHS is the weighted marginal cost (MC), i.e. the product between λ and the firm’s marginal option value. Using (16) it is straightforward to obtain

$$\Pi^* = \rho(x_l) \frac{p \tilde{K}}{\varepsilon}.$$

12
This level can be seen as the product between the rate of return (adjusted for irreversibility) \(\rho(x_t) \) and the cost of the “critical” investment (adjusted for productivity) \(\frac{p_K}{x} \).

To get a better intuition for the result, let us finally analyse the determinants of \(\tilde{\Pi}^* \). Results of comparative statics exercises are summarised in Table 1.

<table>
<thead>
<tr>
<th></th>
<th>MS</th>
<th>MC</th>
<th>(\tilde{\Pi}^*)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\sigma)</td>
<td>+</td>
<td>+</td>
<td>?</td>
</tr>
<tr>
<td>(\lambda)</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
<tr>
<td>(K)</td>
<td>0</td>
<td>+</td>
<td>+</td>
</tr>
</tbody>
</table>

The first element we can look at is uncertainty, namely the standard deviation of demand (\(\sigma \)). Its effect is twofold. On the one hand, an increase in demand uncertainty raises the firm’s option value and, therefore, the required minimum return (\(\rho \)). On the other hand, given the capital level a higher volatility of demand increases the marginal consumer surplus; consumers benefit from the firm’s good news (which may trigger a higher value of the \(x \) factor, without suffering at the margin for the bad news). Therefore uncertainty has an ambiguous effect on \(\tilde{\Pi}^* \).

A higher value of the weight of profit in the welfare function (11) tends to increase the optimal value of \(\tilde{\Pi} \) through its effect on \(\tilde{K} \); given that consumer surplus matters less to social welfare, the incentives to invest become more important to social welfare and profit sharing should intervene at a later stage.

A similar effect occurs when \(K \) raises. If profit sharing discourages investments, then its negative impact on welfare is higher, when investment opportunities are more relevant (i.e., the maximum possible level of capital, \(\tilde{K} \) is larger). When \(\tilde{K} \) is large, a high level of \(\tilde{\Pi} \) is useful to delay this negative effect.

5 Extensions and conclusion

Our paper has thus shown how profit sharing does not delay a firm’s start-up investment relative to a pure price cap scheme. Profit sharing does not necessarily affect total investment either, if the threshold for profit sharing is high enough. We have also identified conditions under which “some” profit sharing is actually optimal, stressing that profit sharing should be less stringent
in sectors where investment opportunities are larger. Despite its apparent complexity, necessary to incorporate uncertainty and time in a satisfactory way, the model still lies on somehow restrictive assumptions. However, it is easy to show how the model can accommodate at least two additional factors.

Regulatory risk. We have explicitly modeled market uncertainty, while regulatory risk - the possibility that the regulator committed to a price cap mechanism betrays expectations and changes the x factor because observed profits are very high - raises different issues. If revenues may be revised downwards because profits are “too high”, then firm’s choices will be affected.

Panteghini and Scarpa (2003b) tackle the issue of whether the introduction of earnings sharing provisions solves this problem, with an investment of given size, showing how uncertainty which intervenes in good states of the world (the risk that high profits will partially be shared) does not affect investment decisions. In the framework we analyze here, it would be easy to show that the same conclusion applies to the initial (start-up) investment. However, regulatory risk may affect the size of total investment, and therefore the expansion decisions. Would earnings sharing be a good way to neutralize this effect? Every decision to expand the initial investment is taken, looking at the future expected value of that expansion. In that moment, the logic governing the decision is the same which underlies the start-up. Therefore, regulatory risk linked to high profits does not modify the comparison between profit sharing and pure price cap that we have developed in the previous section.

Two-sided profit sharing. Many schemes with profit sharing do not only intervene when profits are too high, but when profits are low as well. In this way, the x factor could be adjusted downwards if demand or cost conditions worsen and profits fall below a given threshold. This would make “bad news” less “bad” and is therefore not neutral to investment decisions: this sort of insurance against market risks provides an additional incentive to invest. Therefore, Proposition 1 would be modified in that a two-sided earning sharing scheme encourages the firm to invest sooner than with a pure price cap. Expansion investments would equally be encouraged, so that the underinvestment result of Proposition 1 should be qualified: profit sharing leads to underinvestment (in the sense of Proposition 1) if it is one-sided, while the analysis with two-sided profit sharing would lead to a more ambiguous result.

The empirical analyses of the effects of earnings sharing schemes on investments do not yield clear-cut conclusions, and our results indicate good
reasons why that may be so. However, there is room for further research. In particular some of the parameters of this model, such as the values of x factors, are set by the regulator. Thus an explicit framework taking into account the determination of these values would represent a valuable extension.
6 Appendix

In this Appendix we will prove our main results.

6.1 Derivation of (7)

Let us define the firm’s revenues as \(\Theta_t \equiv p_t q_t \). Using (3) and (6) one can derive the dynamics of revenues

\[
d\Theta_t = \alpha t \Theta_t dt + \sigma q \Theta_t dz_t, \tag{18}
\]

Given (18) and the definition of profit, the derivation of (7) is straightforward. It is worth noting that \(\Theta_t \) represents the state variable of the investment problem. However, profit sharing intervenes whenever profits, rather than revenues, reach a threshold level \(\Pi_t \). To give readers a better intuition of results we will thus express our findings in terms of the regulated state variable. \(\Pi_t \), rather than \(\Theta_t \). In particular, we will use the following switch level as

\[
\tilde{\Theta}(K) \equiv \tilde{\Pi}/\tilde{\Psi}(K). \tag{19}
\]

The proofs will then be concluded by resetting results in terms of the regulated state variable \(\Pi \).

6.2 Proof of Proposition 1

Let us apply dynamic programming to the firm’s value (8). we can thus write

\[
V(K, \Theta) = \Pi(K, \Theta) dt + e^{-rdt} E_0 [V(K, \Theta + d\Theta)],
\]

Expanding the right-hand side and using Itô’s lemma one obtains

\[
rV(K, \Theta) = \Pi(K, \Theta) + (r - \delta(x_t)) \Theta V_\Theta(K, \Theta) + \frac{\sigma^2}{2} \Theta^2 V_{\Theta \Theta}(K, \Theta). \tag{20}
\]

Differentiating (20) with respect to \(K \), and defining \(v(K, \Theta) \equiv V_K(K, \Theta) \), we obtain the following differential equation

\[
r v(K, \Theta) = \Pi_K(K, \Theta) + (r - \delta(x_t)) \Theta v_\Theta(K, \Theta) + \frac{\sigma^2}{2} \Theta^2 v_{\Theta \Theta}(K, \Theta), \tag{21}
\]
which has the following closed-form solution

\[v(K, \Theta) = f(K, \Theta) + \sum_{i=1}^{2} a_i(K; x_i) \Theta^{\beta_i(x_i)}, \]

(22)

where \(\beta_1(x_i) > 1 \) and \(\beta_2(x_i) < 0 \) are the roots of the following characteristic equation:\(^{13}\)

\[\frac{\sigma^2}{2} \beta(\beta - 1) + (r - \delta(x_i)) \beta - r = 0. \]

The index \(l \) in \(a_i(K; x_l) \) indicates that \(x = x_l \), i.e. that profit sharing is not in place. The interpretation of equation (22) is then transparent. The contribution of the \(K \)th unit of capital to the profit flow, when the existing stock of capital is \(K; \) is given by

\[K(K; x_l) \]

which is expected to grow at the rate \(\alpha_l \) until the threshold \(\Pi \) is reached, and at rate \(\alpha_h \) afterwards. Thus, defining \(\epsilon \equiv \beta(x_h) - \beta(x_l) > 0 \) and \(T \) as the expected time of tightening regulation (i.e. when \(x \) rises to \(x_h \)), the expected present value of this contribution is

\[f(K, \Theta) \equiv E_0 \left[\int_0^T e^{-rt} \Pi_K (K, \Theta; \alpha_l) dt + \int_T^\infty e^{-rt} \Pi_K (K, \Theta; \alpha_h) dt \right] = \frac{\Pi_K (K, \Theta)}{\delta(x_l)} - \epsilon \Pi_K (K, \tilde{\Theta}) \left(\frac{\Pi(K, \Theta)}{\Pi} \right)^{\beta_1(x_l)}. \]

The boundary conditions for (22) are:\(^{14}\)

\[v(K, \Theta^*) = p_K, \quad v_\Theta (K, \Theta^*) = 0, \quad a_2(K, x_l) = 0, \quad a_1(K, x_l) = 0. \]

(23)\hspace{1cm} (24)\hspace{1cm} (25)\hspace{1cm} (26)

As usual (23) and (24) are the VMC and SPC for the firm’s optimal policy. Moreover, (25) imposes the irreversibility constraint on capital \(dK \geq 0.\(^{15}\)

The last condition (26) imposes that \(K \leq K. \)

\(^{13}\)The roots are \(\beta_{1,2}(x_i) = \frac{1}{2} - \frac{r-\delta(x_i)}{\sigma^2} \pm \sqrt{\left(\frac{1}{2} - \frac{r-\delta(x_i)}{\sigma^2} \right)^2 + \frac{2r}{\sigma^2}} \) with \(\frac{\partial \beta_1(x_i)}{\partial x_l} > 0.\)

\(^{14}\)For further details on the boundary conditions see Dixit and Pindyck (1994, Ch. 6).

\(^{15}\)In other words, when \(\Theta \) is very small the expected present value of the last unit of capital installed is close to zero. Therefore, the value of the marginal option to scrap it is almost infinite.
Using (19), and substituting (22) into (23) and (24), we have

\[
\frac{\Pi_K(K, \Theta^*)}{\delta(x_i)} - e\Psi_K(K) \tilde{\Theta}(K) \left(\frac{\Pi(K, \Theta^*)}{\Pi} \right)^{\beta_1(x_i)} + a_1(K; x_i)(\Theta^*)^{\beta_1(x_i)} = p_K,
\]

\[
\frac{\Pi_K(K, \Theta^*)}{\delta(x_i)} - \beta_1(x_i)e\Psi_K(K) \tilde{\Theta}(K) \left(\frac{\Pi(K, \Theta^*)}{\Pi} \right)^{\beta_1(x_i)} + \beta_1(x_i)a_1(K; x_i)(\Theta^*)^{\beta_1(x_i)} = 0.
\]

Easy computations yield \(\Theta^*_{PC}(K) \equiv \rho(x_i)\frac{p_K}{\Psi_K(K)} \) for \(\Theta < \tilde{\Theta}(K) \). Multiplying both sides by \(\Psi(K) \) we thus obtain

\[
\Pi^*(K) \equiv \Pi^*_{PC}(K) \equiv \rho(x_i)p_K \frac{\Psi(K)}{\Psi_K(K)} \text{ for } \Pi < \tilde{\Pi}.
\]

(27)

Since \(\Psi_K(K) \) is decreasing in \(K \), this identifies an upward-sloping curve. From conditions (23) and (24) we also obtain

\[
a_1(K; x_i) = - \left(\frac{\beta_1(x_i)-1}{p_K} \right)^{\beta_1(x_i)-1} \left(\frac{\Psi_K(K)}{\Pi} \right)^{\beta_1(x_i)} + e\Psi_K(K) \left(\frac{\Psi(K)}{\Pi} \right)^{\beta_1(x_i)-1}.
\]

(28)

Finally, we need to show that the investment policy (27) is viable and optimal at \(\tilde{\Pi} \). To do so, define \(\tilde{K} \) as the largest \(K \leq \tilde{K} \) that satisfies

\[
\frac{\tilde{\Pi}}{\Psi(\tilde{K})} = \rho(x_i)\frac{p_K}{\Psi_K(\tilde{K})}
\]

or multiplying both sides for \(\Psi(\tilde{K}) \),

\[
\tilde{\Pi} = \Pi_{PC}(\tilde{K}).
\]

(29)

Given decreasing returns to scale, it easy to show that \(\tilde{K} \) exists and is unique. Furthermore, for all \(K \leq \tilde{K} \) it turns out that \(\Pi^*_{PC}(K) \leq \tilde{\Pi} \) which concludes the first part of the proof.

Let us now turn to the case where \(\tilde{K} \leq K \leq \mathcal{K} \). Notice that now it may well happen that, for given \(K > \tilde{K} \), profit first goes beyond \(\tilde{\Pi} \), while at a later stage \(\Pi \leq \tilde{\Pi} \). In this case, in line with the spirit of the mechanism at stake, the price cap goes back to its original level. Recalling (8), the Bellman equations will be

\[
rV(K, \Theta) = \\
= \Pi(K, \Theta) + (r - \delta(x_i))\Theta V_\Theta(K, \Theta) + \frac{\sigma^2}{2}\Theta^2 V_{\Theta\Theta}(K, \Theta)
\]

for \(\Pi \leq \tilde{\Pi} \),

(30)
and
\[rV(K, \Theta) = \Pi(K, \Theta) + (r - \delta(x_h))\Theta V_\Theta(K, \Theta) + \frac{\sigma^2}{2} \Theta^2 V_{\Theta \Theta}(K, \Theta) \]
for \(K \geq \tilde{\Pi} \).

Therefore, by the same line of reasoning, the contribution of the \(Kth \) unit of capital to the firm’s value can be evaluated using (22)-(26) for \(\Pi \leq \tilde{\Pi} \) with (27) as optimal policy. On the other hand, for the case \(\Pi > \tilde{\Pi} \), yields
\[v(K, \Theta) = \frac{\Pi_K(K, \Theta)}{\delta(x_h)} + \sum_{i=1}^{2} a_i(K; x_h) \Theta^{\beta_i(x_h)}. \]
where \(\beta_1(x_h) > 1 \) and \(\beta_2(x_h) < 0 \) are the roots of the following characteristic equation: \(\frac{\sigma^2}{2} \beta(\beta - 1) + (r - \delta(x_h))\beta - r = 0. \)

The boundary conditions are
\[v(K, \Theta^*; \tilde{\Pi}) = p_K \]
\[v_\Theta(K, \Theta^*; \tilde{\Pi}) = 0 \]
\[a_2(K; x_h) = 0 \]
\[a_1(K; x_h) = 0 \]

Again, easy computations yield the optimal policy as \(\Theta^*_{PS}(K) \equiv \rho(x_h)p_K \Psi_K(K) \), for \(\Theta \leq \tilde{\Theta}(K) \). Multiplying both sides by \(\Psi(K) \) we obtain
\[\Pi^*(K) \equiv \Pi^*_{PS}(K) \equiv \rho(x_h)p_K \frac{\Psi(K)}{\Psi_K(K)} \text{ for } \Pi \geq \tilde{\Pi} \]
while the integration constant is
\[a_1(x_h, K) = - \left(\frac{\beta_1(x_h) - 1}{p_K} \right) \beta_1(x_h)^{-1} \left(\Psi_K(K) \left(\frac{\Psi_K(K)}{\beta_1(x_h)\delta(x_h)} \right)^{\beta_1(x_h)} \right) < 0. \]

\(^{16}\)The roots are \(\beta_{1,2}(x_h) = \frac{1}{2} - \frac{r - \delta(x_h)}{\sigma^2} \pm \sqrt{\left(\frac{1}{2} - \frac{r - \delta(x_h)}{\sigma^2} \right)^2 + \frac{2r}{\sigma^2}}. \)
To complete the proof we must now show that \(\rho(x_l) < \rho(x_h) \) for \(x_l < x_h \). Let us differentiate \(\beta_1(x_j) \) with respect to \(\delta(x_j) \) with \(j = l, h \), so as to obtain

\[
\frac{\partial \beta_1(x_j)}{\partial \delta(x_j)} = \frac{1}{\sigma^2} \left\{ 1 - \frac{r - \delta(x_j)}{\sigma^2} - \frac{1}{2} \right\}
\frac{\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right)}{\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right)}
\]

\[
\equiv \frac{1}{\sigma^2} \frac{\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right)}{\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right)}
\]

Since

\[
\frac{\partial}{\partial \beta_1(x_j)} \left(\frac{\beta_1(x_j)}{\beta_1(x_j) - 1} \right) = -\frac{1}{[\beta_1(x_j) - 1]^2} < 0,
\]

we have

\[
\frac{\partial}{\partial \delta(x_j)} \left(\frac{\beta_1(x_j)}{\beta_1(x_j) - 1} \delta(x_j) \right) =
\]

\[
\equiv \frac{\beta_1(x_j)}{\beta_1(x_j) - 1} \left\{ 1 - \delta(x_j) \frac{1}{\sigma^2} \frac{\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right)}{\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right)} \right\}
\]

\[
\equiv \frac{\beta_1(x_j)}{\beta_1(x_j) - 1} \frac{f(\delta(x_j))}{\beta_1(x_j) - 1} \left[\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right) \right] - \frac{\delta(x_j)}{\sigma^2}.
\]

where

\[
f(\delta(x_j)) \equiv [\beta_1(x_j) - 1] \left[\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right) \right] - \frac{\delta(x_j)}{\sigma^2}.
\]

This implies that

\[
\frac{\partial \rho(x_j)}{\partial \delta(x_j)} \propto f(\delta(x_j)). \tag{39}
\]

Given (39) we must now prove that \(f(\delta(x_j)) > 0 \) for \(\delta(x_j) \in (0, r) \). Let us first differentiate \(f(\delta(x_j)) \) with respect to \(\delta(x_j) \). It is easy to have

\[
\frac{\partial f(\delta(x_j))}{\partial \delta(x_j)} = \frac{\beta_1(x_j)}{\sigma^2} \frac{\beta_1(x_j) - 1}{\beta_1(x_j) - \left(\frac{1}{2} - \frac{r - \delta(x_j)}{\sigma^2} \right)} > 0, \text{ for } \delta(x_j) \in (0, r). \tag{40}
\]
Moreover it is easy to ascertain that
\[
\lim_{\delta(x_j) \to 0^+} f(\delta(x_j)) > 0,
\]
\[
f(r) > 0.
\]
(41)

Given (40) and (41) we can state that
\[
f(\rho(x_j)) > 0
\]
for \(\delta(x_j) \in (0, r] \). This means that, holding (39), we have \(\rho(x_l) < \rho(x_h)\) for \(x_l < x_h\). This concludes the proof.■

6.3 Proof of Lemma 1

To compute the firm’s value let us start with the interval \(K \geq \tilde{K}\). Solving (31) for \(\Pi \in (\bar{\Pi}, \Pi_{PS}(K))\) yields:
\[
V(x_l, x_h; \Pi) = \frac{\Pi(K, \Theta)}{\delta(x_h)} + \sum_{i=1}^{2} A_i(K; x_h) \Theta^{\beta_i(x_h)} \text{ for } \Pi \geq \bar{\Pi}.
\]
(42)

In equation (42), the first term is the expected value of profit flows if \(K\) is held constant at its current level. The term, \(A_1(K; x_h) \Theta^{\beta_1(x_h)}\) measures the overall value of firm’s (call) options to expand and is thus positive. The term \(A_2(K; x_h) \Theta^{\beta_2(x_h)}\) is the expected future gain due to less tight regulation (with the switch from \(x_h\) to \(x_l\)), taking place whenever \(\Pi < \bar{\Pi}\). For this reason \(A_2(K, x_h)\) is positive as well.

Let us next focus on the region \(\Pi(K, \Theta) \in (0, \bar{\Pi})\). Solving (30) yields
\[
V(x_l, x_h; \bar{\Pi}) = \frac{\Pi(K, \Theta)}{\delta(x_l)} + \sum_{i=1}^{2} A_i(K; x_l) \Theta^{\beta_i(x_l)} \text{ for } \Pi \leq \bar{\Pi}.
\]
(43)

To compute the value function, we use the boundary condition \(V(K, 0) = 0\), which implies that \(A_2(K; x_l) = 0\). The other term \(A_1(K; x_l) \Theta^{\beta_1(x_l)}\) represents the consequences of reaching the profit sharing constraint in the future (from above) in case the profit flow is reduced. This implies that \(A_1(K; x_l)\) must be negative.

So far we have three constants \(A_1(K; x_h), A_2(K; x_h),\) and \(A_1(K; x_l)\) to be determined. To this end, we assume that the value function is continuously differentiable at point \(\bar{\Pi}\) where the two regimes meet
\[
\frac{\bar{\Pi}}{\delta(x_h)} + \sum_{i=1}^{2} A_i(K; x_h) \Theta^{\beta_i(x_h)} = \frac{\bar{\Pi}}{\delta(x_l)} + A_1(K; x_l) \Theta^{\beta_1(x_l)},
\]
(44)
Finally, given by (38), integrating $a_1(K; x_h)$ yields

$$A_1(K; x_h) \equiv \int_K^K - a_1(z; x_h) \, dz$$

$$= \left(\frac{\beta_1(x_h) - 1}{pK} \right)^{\beta_1(x_h)-1} \left(\frac{1}{\beta_1(x_h)\delta(x_h)} \right)^{\beta_1(x_h)} \int_K^K (\Psi_K(z))^{\beta_1(x_h)} \, dz. \quad (46)$$

Suppose now that $K \leq \tilde{K}$. In this case the profit sharing constraint is never binding and for the firm’s value the only effective threshold is the investment policy $\Pi_{PC}^*(K)$.

For $\Pi \in (0, \Pi_{PC}^*(K))$, solving (20), the value function is:

$$V(x_l, x_h; \Pi) = \frac{\Pi(K, \Theta)}{\delta(x_l)} + \sum_{i=1}^{2} A_i(K; x_l) \Theta^{\beta_i(x_l)} \text{ for } \Pi \in (0, \Pi_{PC}^*(K)). \quad (47)$$

Again, to compute (47) we use the boundary condition $V(K, 0) = 0$, which implies that $A_2(K; x_l) = 0$. Differently from (43), the term $A_1(K; x_l) \Theta^{\beta_1(x_l)}$ represents the value of the firm’s optimal future capacity expansion, in response to the evolution of Π towards the optimal investment policy $\Pi^*(K)$. Yet, differently from (42), here we should take into account the possible switches in the state variable Π.

By integrating (28) yields

$$A_1(K; x_l) \equiv \int_{z=K}^K - a_1(z; x_l) \, dz = A^{PC}(K; x_l) + A^{PS}(K; x_l, x_h), \quad (48)$$

where

$$A^{PC}(K; x_l) \equiv \left(\frac{\beta_1(x_l) - 1}{pK} \right)^{\beta_1(x_l)-1} \left(\frac{1}{\beta_1(x_l)\delta(x_l)} \right)^{\beta_1(x_l)} \int_{z=K}^K (\Psi_K(z))^{\beta_1(x_l)} \, dz > 0,$$

\[\text{Notice that if } \tilde{K} = K \text{ the constraint } \Pi \text{ disappears.}\]
and
\[A^{PS}(K; x_l, x_h) \equiv -\epsilon \int_{z=K}^{\bar{K}} \psi_K(z) \left(\frac{\psi(z)}{\pi} \right)^{\beta_1(x_l)-1} dz \equiv -\epsilon c(K) \bar{\pi}^{1-\beta_1(x_l)} < 0. \]

where \(\epsilon > 0 \). This entails that the introduction of a profit sharing threshold decreases the firm’s value.

The comparison of (27) and (37) involves a change in the optimal policy during the period of optimization, i.e. there is a discontinuous jump in the optimal policy at \(K = \tilde{K} \). However, following Kamien and Schwartz (1991), we introduce a necessary condition at point \((\tilde{K}, \Pi^{\ast}(\tilde{K}))\), according to which the firm is indifferent between price cap and profit sharing, namely
\[
\Pi_{PC}(\tilde{K}) + A_1(K, x_l) \left[\frac{\Pi^{\ast}_{PC}(\tilde{K})}{\Pi^{\ast}_{PS}(\tilde{K})} \right]^{\beta_1(x_l)} = \Pi_{PS}(\tilde{K}) + \sum_{i=1}^{2} A_i(K, x_h) \left[\frac{\Pi^{\ast}_{PS}(\tilde{K})}{\Pi^{\ast}_{PS}(\tilde{K})} \right]^{\beta_1(x_h)},
\]
where, using (27) and (37), we define \(\Pi^{\ast}_{PC}(\tilde{K}) \) and \(\Pi^{\ast}_{PS}(\tilde{K}) \) as the optimal policy immediately before and after tighter regulation. Condition (49) ensures that regime switches do not cause any discrete change in the firm’s value. We thus obtain:
\[V^{PC}(x_l) = \frac{\Pi(K, \Theta)}{\delta(x_l)} + A^{PC}(K; x_l) \Theta^{\beta_1(x_l)}, \]
and
\[\Delta V^{PS}(x_l, x_h; \bar{\Pi}) = A^{PS}(K; x_l, x_h) \Theta^{\beta_1(x_l)}. \]

The Lemma is thus proven.

6.4 Proof of Lemma 2

Let us assume that a lower bound for quantity exists, defined as \(q \). The expected value of consumer surplus can be written as:
\[
S(x_l, x_h; \bar{\Pi}) = E_0 \left[\int_0^{\infty} \left(\int_{q}^{\alpha \cdot p_{dt}} q_{dt} e^{-rt} dt \right) - E_0 \left[\int_0^{\tilde{T}} e^{-rt} p_{dt} dt + \int_0^{\infty} e^{-rt} p_{dt} dt \right] \right].
\]

= \[E_0 \left[\sum_{n=1}^{\frac{n}{n-1}} \int_0^{\infty} e^{-rt} \left(\gamma_{t \frac{n}{n-1}} - q_{t \frac{n}{n-1}} \right) dt \right] - E_0 \left[\int_0^{\tilde{T}} e^{-rt} p_{dt} dt + \int_0^{\infty} e^{-rt} p_{dt} dt \right].\]
Recalling that $\Theta_t \equiv p_t q_t = (\gamma_t)^{\frac{1}{\eta}} q_t^{\frac{\eta-1}{\eta}}$, we get:

$$S(x_l, x_h; \tilde{\Pi}) = \frac{n}{\eta-1} \left\{ E_0 \left[\int_0^\infty e^{-rt} \Theta_t dt \right] - E_0 \left[\int_0^\infty e^{-rt} (\gamma_t)^{\frac{1}{\eta}} q^{\frac{\eta-1}{\eta}} dt \right] \right\} +$$

$$- E_0 \left[\frac{\Gamma}{\eta-1} e^{-rt} \int_0^\infty e^{-rt} \Theta_t dt \right] =$$

$$= \frac{n}{\eta-1} \left\{ E_0 \left[\int_0^\infty e^{-rt} \Theta_t dt \right] - E_0 \left[\int_0^\infty e^{-rt} (\gamma_t)^{\frac{1}{\eta}} q^{\frac{\eta-1}{\eta}} dt \right] \right\} +$$

$$- E_0 \left[\frac{\Gamma}{\eta-1} e^{-rt} \frac{\Theta_t}{\delta(x_h)} - \frac{\Theta_t}{\delta(x_l)} \right] .$$

(50)

Therefore, (50) can be rewritten as

$$S(x_l, x_h; \tilde{\Pi}) = \frac{1}{\eta-1} E_0 \left[\int_0^\infty e^{-rt} \Theta_t dt \right] - \frac{\eta}{\eta-1} E_0 \left[\int_0^\infty e^{-rt} (\gamma_t)^{\frac{1}{\eta}} q^{\frac{\eta-1}{\eta}} dt \right]$$

$$+ e^{-rT} \left[\frac{\Theta}{\delta(x_h)} - \frac{\Theta}{\delta(x_l)} \right]$$

$$= S^{PC}(x_l) + \Delta S^{PS}(x_l, x_h; \tilde{\Pi}),$$

(51)

where $S^{PC}(x_l) \equiv \frac{1}{\eta-1} \frac{\Theta}{\delta(x_l)} - \frac{n}{\eta-1} \pi_0$ is the consumer surplus under price cap regulation and $\Delta S^{PS}(x_l, x_h; \tilde{\Pi}) \equiv B^{PS}(x_l, x_h; \tilde{\Pi}) \Theta_{x_l}^{\beta_1(x_l)}$, with $B^{PS}(x_l, x_h; \tilde{\Pi}) \equiv \epsilon \left(\frac{\mu}{\mathbb{P}(\tilde{K})} \right)^{1-\beta_1(x_l)}$, is the expected increase in the consumer surplus once profit sharing becomes stringent. Thus we obtain (13).

6.5 Proof of Proposition 2

Using (47), (48), and (51), one obtains (11) in the text, where $W^{PC} \equiv S^{PC} + \lambda V^{PC}$ is the welfare function under price-cap regulation and the second term is given by

$$\Delta W^{PS}(x_l, x_h; \tilde{\Pi}) \equiv \Delta S^{PS}(x_l, x_h; \tilde{\Pi}) + \lambda \Delta V^{PS}(x_l, x_h; \tilde{\Pi})$$

$$= \epsilon \left(\frac{\mu}{\mathbb{P}(\tilde{K})} \right)^{1-\beta_1(x_l)} \left\{ \Psi(\tilde{K})^\beta_{x_l} - \lambda \int_{z=K}^\infty \Psi_{K}(z) (\Psi(z))^{\beta_1(x_l)-1} dz \right\} \Theta_{x_l}^{\beta_1(x_l)} .$$

(52)

Using (52) one easily obtains (15).
6.6 Proof of Proposition 3

Let us recall (15) and compute

\[\max_{\Pi} \Delta W^{PS}(x_l, x_h; \Pi) = \max_{\Pi} \epsilon \tilde{\Pi}^{1 - \beta_1(x_l)} \left[\psi \left(\tilde{K} \right)^{\beta_1(x_l) - 1} - \lambda c \left(\tilde{K} \right) \right] \Theta^{\beta_1(x_l)}. \]

(53)

The first order condition is

\[\frac{\partial \Delta W^{PS}(x_l, x_h; \Pi)}{\partial \Pi} = \epsilon \left[1 - \beta_1(x_l) \right] \tilde{\Pi}^{1 - \beta_1(x_l)} \left[\psi \left(\tilde{K} \right)^{\beta_1(x_l) - 1} - \lambda c \left(\tilde{K} \right) \right] +
\]

\[+ \epsilon \tilde{\Pi}^{1 - \beta_1(x_l)} \left[\beta_1(x_l) - 1 \right] \Psi_K \left(\tilde{K} \right) \psi \left(\tilde{K} \right)^{\beta_1(x_l) - 2} \frac{\partial \tilde{K}(\Pi)}{\partial \Pi} = 0. \]

(54)

Using (54) one obtains

\[\frac{\partial \Delta W^{PS}(x_l, x_h; \Pi)}{\partial \Pi} = \epsilon \left[\beta_1(x_l) - 1 \right] \tilde{\Pi}^{1 - \beta_1(x_l)} \left\{ \lambda c \left(\tilde{K} \right) +
\]

\[- \psi \left(\tilde{K} \right)^{\beta_1(x_l) - 1} \left[1 - \frac{\tilde{\Pi} \Psi_K \left(\tilde{K} \left(\tilde{\Pi} \right) \right)}{\psi \left(\tilde{K} \left(\tilde{\Pi} \right) \right)} \frac{\partial \tilde{K}(\Pi)}{\partial \Pi} \right] \right\}. \]

(55a)

Recall that \(\tilde{K} \) is such that

\[\rho(x_l) p_{\tilde{K}} \frac{\psi \left(\tilde{K} \right)}{\psi_K \left(\tilde{K} \right)} = \tilde{\Pi}. \]

(56)

Rewriting (56) as

\[\rho(x_l) p_{\tilde{K}} = \frac{\Psi_K \left(\tilde{K} \right) \tilde{\Pi}}{\psi \left(\tilde{K} \right)} \]

(57)

and differentiating (57) yields

\[\frac{\partial \tilde{K}}{\partial \Pi} = \left[\beta_1(x_l) - 1 \delta(x_l) p_{\tilde{K}} \right]^{-1} \left\{ 1 - \frac{\psi \left(\tilde{K} \right) \Psi_{KK} \left(\tilde{K} \right)}{\left[\psi_K \left(\tilde{K} \right) \right]^2} \right\}^{-1}. \]

(58)
Given $\Psi(K) = K^\varepsilon$ with $\varepsilon \in (0, 1)$ we have $\Psi_K(K) < \frac{\Psi(K)}{K}$ for any K. Therefore, we can write

$$1 - \frac{\Psi(\tilde{K}) \Psi_{KK}(\tilde{K})}{\left[\Psi_K(\tilde{K})\right]^2} = \frac{1}{\varepsilon}.$$

Next, substituting (57) and (58) into (55a) one easily obtains

$$\frac{\partial \Delta W^{PS}(x_l, x_h; \bar{\Pi})}{\partial \Pi} = \varepsilon \left[\beta_1(x_l) - 1 \right] \bar{\Pi}^{-\beta_1(x_l)} \left\{ \lambda c(\bar{K}) - (1 - \varepsilon) \Psi(\bar{K})^{\beta_1(x_l)-1} \right\}.$$

Using (59), and applying the Envelope Theorem, the second order condition holds, i.e.:

$$\frac{\partial^2 \Delta W^{PS}(x_l, x_h; \bar{\Pi})}{(\partial \Pi)^2} \propto - \left\{ (1 - \varepsilon) \left[\beta_1(x_l) - 1 \right] \Psi(\bar{K})^{-1} \Psi_K(\bar{K}) \frac{\partial \bar{K}}{\partial \Pi} \right\} < 0$$

Solving (59) yields

$$\left[\frac{\lambda c(\bar{K})}{1 - \varepsilon} \right]^\frac{1}{\beta_1(x_l)-1} = \tilde{K}. \quad (60)$$

and since K is nil we get:

$$c(\bar{K}) = \int_0^{\bar{K}} \Psi_K(z) (\Psi(z))^{\beta_1(x_l)-1} dz = \frac{\Psi(\bar{K})^{\beta_1(x_l)}}{\beta_1(x_l)}. \quad (61)$$

Substituting (60) into (61) it is straightforward to show that if $\varepsilon < 1 - \frac{1}{\beta_1(x_l)}$, the inequality $\tilde{K} < \bar{K}$ always holds. Finally, using (56) and (60), one obtains (17).

6.7 Comparative statics

Recall that $\frac{\partial \beta_1(x_l)}{\partial \sigma} < 0$ and that, by assumption, $\Psi(\bar{K}) \leq 1$. This implies that $\bar{K}^\varepsilon \leq 1$, and, hence, $\bar{K} \leq 1$. Using (16), and computing partial derivatives of MS and MC, we have

\[18\] See Dixit and Pindyck (1994).
<table>
<thead>
<tr>
<th>(\sigma)</th>
<th>(\frac{\partial \text{MS}}{\partial \sigma} = \varepsilon \text{MS} \log K \cdot \frac{\partial \beta_1(x_l)}{\partial \sigma} > 0)</th>
<th>(\frac{\partial \text{MC}}{\partial \sigma} = \text{MC} \left(\varepsilon \log K - \frac{1}{\beta_1(x_l)} \right) \cdot \frac{\partial \beta_1(x_l)}{\partial \sigma} > 0)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(\lambda)</td>
<td>(\frac{\partial \text{MS}}{\partial \lambda} = 0)</td>
<td>(\frac{\partial \text{MC}}{\partial \lambda} = c(K) > 0)</td>
</tr>
<tr>
<td>(\overline{K})</td>
<td>(\frac{\partial \text{MS}}{\partial \overline{K}} = 0)</td>
<td>(\frac{\partial \text{MC}}{\partial \overline{K}} = \frac{\varepsilon \beta_1(x_l) \text{MC}}{K} > 0)</td>
</tr>
<tr>
<td>(\varepsilon)</td>
<td>(\frac{\partial \text{MS}}{\partial \varepsilon} = -\frac{1}{1-\varepsilon} + (\beta_1(x_l) - 1) \log \overline{K} \leq 0)</td>
<td>(\frac{\partial \text{MC}}{\partial \varepsilon} = \beta_1(x_l) \text{MC} \cdot \log \overline{K} \leq 0)</td>
</tr>
</tbody>
</table>
References

\[\Pi(K) \]

\[\tilde{\Pi} \]

\[\Pi^*_\text{pc}(K) \]

\[\Pi^*_\text{ps}(K) \]

Fig. 1
Anno 2003
0302 – Michele MORETTO “Competition and Irreversible Investment under Uncertainty” (febbraio)
0303 – Giulio PALERMO “Understanding the Market Process: The Limits of the Austrian Theory of Knowledge and the Role of Economic Power” (febbraio)
0304 – Paolo M. PANTEGHINI, Carlo SCARPA “Irreversible Investments and Regulatory Risk” (marzo)
0305 – Angelo ANTOCI, Pier Luigi SACCO, Carlo SCARPA “Adoption of Flexible Technologies in an Evolutionary Environment” (marzo)
0306 – Paolo M. PANTEGHINI, Guttorm SCHJELDERUP “Competing for Foreign Direct Investments: A Real Options Approach” (marzo)
0307 – Michele MORETTO, Gianpaolo ROSSINI “The Cost of Stock Options as an Incentive Device” (aprile)
0308 – Giulio PALERMO “The Ontology of Economic Power in a Critical Realist Perspective: The Orthodox Approach and Marx” (aprile)
0309 – Mario CASSETTI “A note on the long-run behaviour of Kaleckian models” (giugno)
0310 – Daniel ANKARLOO, Giulio PALERMO “Anti-Williamson a Marxian critique of New Institutional Economics” (giugno)
0311 – Sandye GLORIA-PALERMO, Giulio PALERMO “To What Extent is the Austrian Theory of Capital Austrian? Bohm-Bawerk and Hicks Reconsidered” (giugno)
0312 – Paolo M. PANTEGHINI “A Dynamic Measure of the Effective Tax Rate” (ottobre)
0313 – John GEWEKE, Gianni AMISANO “Compound Markov Mixture Models with Applications in Finance” (ottobre)
0314 – Gianni AMISANO, Alessandra DEL BOCA “Profit Related Pay in Italy” (ottobre)
0315 – Michele POLO, Carlo SCARPA “Entry Without Competition” (ottobre)

Anno 2004
0401 – Francesco MENONCIN, Marco TRONZANO “Optimal Real Exchange Rate Targeting: A Stochastic Analysis” (gennaio)
0402 – Chiara D’ALPAOS, Michele MORETTO “La valutazione della flessibilità nel servizio idrico integrato” (maggio)
0403 – Francesco MENONCIN “Risk management for pension funds” (giugno)
0404 – Francesco MENONCIN “Risk management for an internationally diversified portfolio” (agosto)
0405 – Franco SPINELLI, Carmine TRECROCI “Le determinanti del tasso di sconto in Italia negli anni 1876-1913: un'analisi empirica e documentale” (settembre)
0406 – Cesare DOSI “Enviromental Innovation, Wat of Attrition and Investment Grants” (settembre)
0407 – Chiara DALLE NOGARE, Matilde VASSALLI “Pressare on monetary policy: the Italian evidence” (ottobre)
0408 – Gianni AMISANO, Maria Letizia GIORGETTI “The Dynamics of Firms’ Entry and Diversification: A Bayesian Panel Probit Approach. A cross-country analysis” (ottobre)
0409 – Michele MORETTO, Gianpaolo ROSSINI “Start-up entry strategies: Employer vs. Nonemployer firms” (novembre)
0410 – Michele MORETTO, Paola VALBONESI “Dynamic Firm Regulation with Endogenous Profit-Sharing” (novembre)
0411 – Chiara DALLE NOGARE, Roberto RICCIUTI “Chief Executives’ Term Limits and Fiscal Policy Choices: International Evidence” (dicembre)

Anno 2005
0502 – Chiara D’ALPAOS, Cesare DOSI, Michele MORETTO “Concession Length and Investment Timing Flexibility” (gennaio)
0504 – Gianni AMISANO, Raffaela GIACOMINI “Comparing Density Forecasts via Weighted Likelihood Ratio Tests” (febbraio)
0505 – Roberto CASARIN “Stochastic Processes in Credit Risk Modelling” (marzo)
0506 – Paolo M. PANTEGHINI “S-Based Taxation under Default Risk” (luglio)
0507 – Michele MORETTO, Sergio VERGALLI “Migration Dynamics” (agosto)
0508 – Chiara D’ALPAOS, Paola VALBONESI “Una valutazione delle ipotesi di revisione del metodo tariffario normalizzato per il servizio idrico integrato” (novembre)
0509 – Raffaele MINIACI, Maria Laura PARISI “Which Plans to Reduce the Digital Divide? Policy Evaluation and Social Interaction” (ottobre)

Anno 2006

0601 – Francesco MENONCIN “The role of longevity bonds in optimal portfolios” (gennaio)

0603 – Roberto CASARIN, Carmine TRECROCI “Business Cycle and Stock Market Volatility: A Particle Filter Approach” (febbraio)

0604 – Chiara DALLE NOGARE, Matilde VASSALLI “A Pressure-Augmented Taylor Rule for Italy” (marzo)

0605 – Alessandro BUCCIOL, Raffaele MINIACI “Optimal Asset Allocation Based on Utility Maximization in the Presence of Market Frictions” (marzo)

0606 – Paolo M. PANTEGHINI “The Capital Structure of Multinational Companies under Tax Competition” (marzo)

0607 – Enrico MINELLI, Salvatore MODICA “Credit Market Failures and Policy” (gennaio)

0609 – Françoise FORGES, Enrico MINELLI “Afriat’s Theorem for General Budget Sets” (marzo)

0610 – Aviad HEIFETZ, Enrico MINELLI “Aspiration Traps” (marzo)