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Abstract

In static traffic assignment problems, the user experienced travel time in a system optimum

solution can be much higher than in a user equilibrium solution. On the other hand, the total

travel time in a user equilibrium solution can be significantly higher than the total travel time

in a system optimum solution. A compromise solution between the two assignments seems to

be the right choice for traffic regulators aiming at improving the network performance while

satisfying users needs. All works in this field consist in restricting ex-ante the set of eligible

paths for each driver. However, when demands flow on the road network, these paths could

turn out to be very unfair for users and some excluded paths could be much fairer then the

eligible ones. In order to overcome this limitation, in this paper a MILP based approach able

to minimize the total travel time spent on the road network while controlling the unfairness

experienced by users is proposed. Computational results show that the obtained total travel

time is very close to the system optimum one while guaranteeing a very low level of experienced

unfairness. The underlying idea is to bound the experienced travel time of each user to a

fixed threshold, representing the maximum level of unfairness the regulator decides to allow.

The MILP formulation requires the enumeration of all feasible paths from each origin to each

destination each one corresponding to a binary variable and, hence, it becomes computationally

intractable even considering small road networks. To this aim an efficient and accurate heuristic

algorithm is also proposed.

Keywords: Traffic assignment, unfairness, matheuristic for traffic assignment, constrained

system optimum
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1 Introduction

Urban areas are world-wide affected by severe road congestion problems. Traffic congestion is

a result of an economic growth that causes an increase of private and commercial transportation.

Network infrastructure is not dynamic and, hence, when the demand for transportation increases,

congestion occurs. In order to reduce the traffic congestion effects, a centralized traffic assignment

method, able to route vehicles to minimize the congestion impact, is a valuable choice. Almost

all vehicles are nowadays equipped with sat-nav devices that can also display the current traffic

flows and, consequently, return the fastest path for the vehicle. The route suggested by these

devices does not consider the impact of individual choices on the congestion of the whole road

network. For instance, all commuters entering the network at the same point and heading to the

same destination have the same information and, consequently, the same path will be suggested

to them. In this case congestion is simply shifted from already congested paths to the suggested

ones. Thus, coordination among users is fundamental in planning an efficient traffic assignment.

The issue that has to be taken into account is the adherence of drivers to the assignment.

Traditionally, traffic assignment concerns assigning routes to drivers in a transportation net-

works and is usually defined on a road network with an origin-destination (OD) matrix specifying

the demand for transportation, i.e, the number of vehicles per time unit that is expected to travel

from each origin to each destination (see Sheffi (1985), Ben-Akiva and Lerman (1985), Florian and

Hearn (1999) and de Dios Ortuzar and Willumsen (2011) for demand forecasting methodologies).

In traffic assignment, experienced travel times are computed for each network arc through the

so-called latency function ta(x), which depends on the arc traffic flow x. The concept of arc length

is defined as the arc normal length, i.e. an a priori estimate of the travel time of an arc.

Traffic assignment models were first presented in the seminal work Wardrop (1952). In this

work, the two most famous principles on traffic assignment (the user equilibrium and the system

optimum) are stated and described through their properties. The user equilibrium represents an

assignment in which the travel times along all used routes from an origin to a destination are equal

and not more than the travel time that would be experienced by a single user on any other route.

This is the so-called natural assignment since it is the equilibrium reached when all users decide on

their own the route to be used. On the other hand, the system optimum is an assignment in which
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the total travel time is minimized and the assignment is centralized.

The difference in terms of total travel time between implementing a user equilibrium and a

system optimum traffic assignment is commonly known as price of anarchy and represents how

much the system would pay in terms of total travel time if the natural assignment is implemented

(see Mahmassani and Peeta (1993) for further discussions and references). However, there are

drawbacks also in implementing a system optimum traffic assignment. While the user equilibrium

ensures fairness for users travelling between the same origin and destination, in a system optimum

traffic assignment, some users may be assigned to paths that are much longer than paths assigned

to other users for the same OD pair.

In order to reduce the price of anarchy while maintaining fairness between users, the system

optimal routing of traffic flows with user constraints was first presented in Jahn et al. (2000).

This assignment considers as eligible paths those paths that have a normal length within a certain

percentage of the path with the shortest normal length. Later, in Jahn et al. (2005), the work

has been improved considering new unfairness measures. Computational results, in both cases,

demonstrate that the system optimum total travel time can be nearly achieved with the restricted

set of eligible paths and theoretical bounds are derived in Schulz and Stier-Moses (2006). Angelelli

et al. (2016a) presents the first attempt to use a linear programming approach to solve the system

optimal routing with users constraints problem. Here, the total travel time is minimized while

keeping the network non-congested, if possible, or at its minimum congestion level otherwise. The

set of eligible paths is restricted as in previous works. Given the fact that the number of paths is

in the worst case exponential in the instance size, in Angelelli et al. (2016c) a heuristic algorithm

is proposed. Subsequently, in Angelelli et al. (2016b) a linear programming model, in which a flow-

dependent latency function is embedded, is presented. The proposed model adopts a piecewise

approximation of the convex latency function using only continuous variables. Several variants of

the system optimal routing with user constraints have been proposed in literature. In Correa et al.

(2007) the maximum experienced travel time instead of the total travel time is minimized allowing

all possible paths from origin to destination. In Lujak et al. (2015) a model, in which the weighted

geometric mean of the experienced travel times is minimized, is proposed. The solution method is

based on a multi-agent negotiation model. Recently, in Angelelli et al. (2018) a trade-off solution

between minimizing the maximum and the average arc congestion has been proposed along with a
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heuristic algorithm.

The system optimal routing of traffic flows with users constraints shown in Jahn et al. (2005)

and, in a linearized version, in Angelelli et al. (2016b), assigns paths to OD pairs to minimize the

total travel time experienced by users while bounding the set of eligible paths choosing them a priori

on the basis of the path normal length. However, this path selection method does not consider the

impact of the actual traffic flows on each arc of the network. Moreover, a path that was eligible

a priori may turn out not to respect the desired fairness level. Moreover, when the demand for

transportation is particularly high (as during the rush-hour), a priori non-eligible paths could turn

out to be the best or one of the best choices considering flows deriving from the assignment. Thus,

paths selection should be done considering the current path travel times and by allowing their use

only if a certain threshold is not reached. In order to consider the current travel times, the path

selection has to be embedded into the model and travel time for each used path is there bounded

to be fair enough for users. To this aim, in this paper, we propose a new measure, called fastest

path unfairness, that is the ratio of the experienced travel time and the minimum travel time

the driver could experience on the road network with actual flows. This measure represents the

unfairness experienced by using the recommended path instead of following the recommendation

of any sat-nav device with real-time traffic information.

A mixed-integer linear programming model, called the unfairness constrained system optimum

model (UC-SO), is presented that minimizes the total travel time spent on the network while

bounding the experienced travel time for each used path to be less than a certain percentage of the

travel time that would be experienced on the fastest path given actual network flows for the OD

pair. All possible paths from origin to destination are considered as eligible. A piecewise linear

approximation of the flow-dependent latency function ensures the linearity of the model. The model

requires the enumeration of all possible paths from origin to destination each one associated to a

binary variable and, hence, is difficult to solve even when small instances are considered. To this

aim, we propose also a matheuristic able to return a high quality solution in a very short time. An

extensive computational study shows that the resulting total travel time is very near to the system

optimum one while maintaining the experienced unfairness low enough to encourage a complete

compliance to the proposed assignment, contrary to the system optimum that usually produces

very high unfairness levels for some users.
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The remainder of the paper is organized as follows. In Section 2, the unfairness constrained

system optimum model (UC-SO) is presented along with three alternative bounding unfairness

policies for traffic assignment. In Section 3, the matheuristic to solve the unfairness constrained

system optimum is provided. In Section 4, the results of an extensive study of the unfairness

constrained system optimum model and the matheuristic algorithm are shown. Finally, in Section

5, some concluding remarks are provided.

2 The unfairness constrained system optimum model

In this section, the unfairness constrained system optimum model (UC-SO), aiming at searching

the system optimal path assignment while upper bounding the experienced path travel time, is

presented. Consider a directed network G= (V,A), where V and A⊆ V ×V represent, respectively,

the set of vertices and the set of arcs. Arcs (i, j)∈A represent road segments while vertices represent

junctions between roads and/or an origin or destination point for an OD pair. A latency function

tij(xij), representing the arc travel time depending on the rate of vehicles xij entering the arc, is

consistently associated to each arc (i, j) ∈ A. In addition, each arc is associated to a number of

parameters as the free-flow travel time tFFij (= tij(0)), the arc travel time under user equilibrium

tUEij and a tuning parameter uij used to shape the latency function. The most popular latency

function is the U.S. Bureau of Public Road (BPR) function tij(x) = tFFij [1 + 0.15(xijuij )4] and it is

the one used in our model. Transportation demand rates are represented by the set C ⊆ V ×V of

origin-destination (OD) pairs. Each OD pair c∈C is associated with an origin Oc ∈ V , a destination

Dc ∈ V , and a demand rate dc from Oc to Dc. All possible paths between each origin Oc and each

destination Dc are allowed and the set of paths from Oc to Dc is denoted by Kc with K = ⋃
c∈C

Kc.

The indicator akcij takes value 1 if path k ∈Kc contains arc (i, j) ∈ A and takes value 0 otherwise.

In addition, each OD pair is consistently associated with its experienced travel time under user

equilibrium tUEc and its fastest path travel time under free-flow conditions tFFc . We define the

fastest path unfairness for each path k ∈K as the relative difference in terms of experienced travel

time between the path k and the fastest path from origin to destination considering the actual arc

flows. then, the model bounds unfairness by allowing to use only those paths that have a fastest

path unfairness lower than a certain percentage γFP . The experienced arc travel time is a non-
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linear function of the arc flow rate xij . In order to linearize the model, an approximated version

of the total arc travel time is adopted: σij(xij) ≈ tij(xij)xij (for the linearization technique, see

Angelelli et al. (2016b)).

An upper bound on the flow rate xij , Uij , is fixed and each non-linear term tij(xij)xij is

linearized on the range [0,Uij ] by a piecewise linear function.

The range [0,Uij ] is partitioned in n flow rate intervals, where n is defined as the accu-

racy level, at fixed break-points B = {b0ij = 0, b1ij , ...., bn−1
ij , bnij = Uij} with corresponding values

fij = {f0
ij = 0,f1

ij = tij(b1ij)b1ij , ...,fnij = tij(Uij)Uij}. The interval width is denoted by ∆h
ij = bhij−b

h−1
ij

(h= 1, . . . ,n).

The UC-SO model follows:

min
∑

(ij)∈A
σij

xij =
∑
c∈C

∑
k∈Kc

ackij yck ∀(i, j) ∈A (1)

dc =
∑
k∈Kc

yck ∀c ∈ C (2)

xij =
n∑
h=1

λhij ∀(i, j) ∈A (3)

σij =
n∑
h=1

fhij−f
h−1
ij

∆h
ij

λhij ∀(i, j) ∈A (4)

τij =
n∑
h=1

tij(bhij)− tij(bh−1
ij )

∆h
ij

λhij ∀(i, j) ∈A (5)

τck =
∑

(i,j)∈A
ackij τij ∀c ∈ C ∀k ∈Kc (6)

τck ≤ (1 +γFP )τck′+M(1−vck) ∀c ∈ C ∀k ∈Kc ∀k′ ∈Kc \{k} (7)

yck ≤ dcvcp ∀c ∈ C ∀k ∈Kc (8)

xij < 0 ∀(i, j) ∈A (9)

yck ≥ 0 ∀c ∈ C ∀k ∈Kc (10)

0≤ λhij ≤∆h
ij ∀(i, j) ∈A ∀h= 1, ...,n (11)

vck ∈ {0,1} ∀c ∈ C ∀k ∈Kc. (12)
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The decision variables ykc represent the flow of OD pair c ∈ C routed on path k ∈ Kc. The

variables xij represent the total flow on arc (i, j) ∈A. Auxiliary variables λhij represent the amount

of flow xij assigned to interval [bh−1
ij , bhij ]. Variables τij represent the travel time experienced on arc

(i, j) ∈ A while variables τck represent the experienced travel time on the k-th path of OD pair c.

Moreover, variables σij represent the arc experienced travel time multiplied by the arc flow rate

xij . Binary variables vck equal 1 if the flow on path k ∈Kc is greater than zero and 0 otherwise.

Constraints (1) set the flow on an arc as the sum of the flow on each path passing through the arc.

Constraints (2) ensure that the demand dc of OD pair c ∈C is routed on paths in Kc. Constraints

(3) ensure that the entire flow xij is covered by λ variables. The convexity of the objective function

and constraints (4) guarantee that in an optimal solution the flow xij is covered by an assignment

of λ variables such that λhij > 0 if and only if λh−1
ij = ∆h−1

ij for h = 2, . . . ,n. Indeed, the sum of

σij = ∑n
h=1

fhij−f
h−1
ij

∆h
ij

λhij is minimized and, for each interval h, fhij−f
h−1
ij

∆h
ij

>
fh−1
ij −fh−2

ij

∆h−1
ij

for convexity.

Thus, the model tends to assign vehicles to a lower index interval first since the impact on the

objective function is lower. Similarly, Constraints (5) identify the travel time experienced on each

arc using λ variables and parameters of the piecewise function. Constraints (6) set the path travel

time as the sum of the flow on each arc belonging to path. Constraints (7) ensure that if the path

is used, i.e. vck = 1, then the path travel time does not exceed the travel time experienced on all

the other OD pair paths by a fixed percentage γFP . If path is not used (vck = 0) then the path

travel time is unbounded. If the path is used (vck = 1), then the path travel time is constrained to

be lower than a certain threshold γFP of the experienced travel time on all paths k′ ∈Kc \k, even if

they are not used. Alternative bounding unfairness policies are shown in Sections 2.1. Constraint

(8) ensure that the variable vck is set to 1 if flow yck on path k ∈Kc is greater than zero. Finally,

constraints (9-12) define the domain of the variables xij , yck, vck and λhij .

For readers’ convenience, the notation used in all models is summarized in Table 1.

2.1 On alternative bounding unfairness policies

The choice of the policy used in bounding the unfairness is crucial for a fair traffic assignment

and alternative policies could be implemented, each one resulting in a different assignment. In the

following we propose three alternative policies, derived from the unfairness measures proposed in
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Table 1. Notation used in UC-SO model

UC-SO model notation

Sets

V set of vertices
A set of arcs
C set of OD pairs
Kc set of all possible paths for c ∈ C

Parameters

uij tuning parameter of the latency function F (xij) of arc (i, j) ∈A
Uij maximum flow allowed on arc (i, j) ∈A
tFFij free-flow travel time of arc (i, j) ∈A
akcij 1 if path k ∈Kc contains arc (i, j) ∈A, 0 otherwise
dc demand of OD pair c ∈ C
D total demand: D = ∑

c∈C
dc

γFP maximum fastest path unfairness value allowed for path k ∈Kc if used, i.e. if yck > 0
bhij h-th breakpoint of the domain of variable xij
fhij value of the latency function F (xij) at breakpoint bhij , i.e., F (bhij)
∆h
ij length of interval [bh−1

ij , bhij ]
n accuracy level

Primary decision variables

yck flow rate of OD pair c ∈ C routed on path k ∈Kc

xij total flow rate entering arc (i, j) ∈A: xij = ∑
c∈C

∑
k∈Kγ

c

akcij yck

Auxiliary decision variables

λhij amount of flow assigned to interval [bh−1
ij , bhij ]

σij approximated experienced total travel time on arc (i, j) ∈A
τij approximated experienced travel time on arc (i, j) ∈A
τck approximated experienced travel time on path k ∈Kc
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Jahn et al. (2005), to bound path unfairness: the free-flow unfairness policy, the user equilibrium

unfairness policy and the loaded unfairness policy. The user equilibrium unfairness is the ratio

between the experienced travel time and the experienced travel time for the same OD pair in a

user equilibrium. The free-flow unfairness is the ratio between the experienced travel time and

the fastest path travel time for the same OD pair with respect to the free-flow travel times. The

loaded unfairness is the ratio between the experienced travel time and the experienced travel time

of the fastest traveller of the same OD pair. In all cases, a new set of constraints have to replace

constraints (7) in the UC-SO model.

The free-flow unfairness and the user equilibrium unfairness measures are both evaluated as the

ratio between the experienced travel time and the experienced travel time on the same network in

a particular status, namely in an empty network (free-flow travel time) or under user equilibrium.

The choice of the path is done by considering the current flows on the network but the terms of

comparison is evaluated by using an "a priori" measure.

2.1.0.1 The free-flow unfairness

In the free-flow unfairness model (FF-UC-SO), each used path travel time is bounded to be

lower than a certain percentage of the travel time of the fastest path under free-flow conditions. It

reflects an assignment in which users are experiencing a travel time that is no more than a certain

percentage of the travel time they could experience on an empty network on the fastest path,

namely τFFck .

The FF-UC-SO model follows:

min
∑

(ij)∈A
σij

(1)− (6)

τck ≤ (1 +γFF )τFFck +M(1−vck) ∀c ∈ C ∀k ∈Kc (13)

(8)− (12).
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Constraints (13) ensure that if the path is used, i.e. vck = 1, then the experienced path travel

time does not exceed the travel time τFFck on the fastest path under free-flow conditions by a fixed

percentage γFF . If path is not used (vck = 0), then the path travel time is unbounded when big

enough values of M are chosen.

2.1.0.2 The user equilibrium unfairness

In the user equilibrium unfairness model (UE-UC-SO), each used path travel time is bounded

to be lower than a certain percentage of the user equilibrium travel time experienced by its OD

pair. It reflects an assignment in which users are experiencing a travel time that is no more than

a certain percentage of the travel time they could experience under a user equilibrium assignment.

The UE-UC-SO model follows:

min
∑

(ij)∈A
σij

(1)− (6)

τck ≤ (1 +γUE)τUEck +M(1−vck) ∀c ∈ C ∀k ∈Kc (14)

(8)− (12).

Constraints (14) ensure that if the path is used, i.e. vck = 1, then the path travel time does

not exceed the travel time τUEck experienced in a user equilibrium traffic assignment by a fixed

percentage γUE . As for the FF-UC-SO model, if path is not used (vck = 0), then the path travel

time is unbounded.

2.1.0.3 The loaded unfairness

The loaded unfairness measure uses, as terms of comparison, the smallest travel time experienced

by the OD pair given actual traffic flows. Here, used paths are compared with other used paths

by the same OD pair while in UC-SO model comparison is made with all OD pair paths, used

or not. As already pointed out in the introduction, this is more reliable than free-flow and user

equilibrium unfairness measures since it better reflects the choices usually made by drivers which
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have access to real-time data and the choice of the path is done by considering the current flows

on the network. However, as for the UC-SO model, a significant number of additional constraints

have to be added to the model with respect to the FF-UC-SO and the UE-UC-SO model.

In the loaded unfairness model (L-UC-SO), each used path travel time is bounded to be lower

than a certain percentage of its OD pair used fastest path computed using the actual arc flows. It

reflects an assignment in which users are experiencing a travel time that is no more than a certain

percentage of the travel time experienced by other OD pair users.

The L-UC-SO model follows:

min
∑

(ij)∈A
σij

(1)− (6)

τck ≤ (1 +γL)τck′+M(2−vck−vck′) ∀c ∈ C ∀k ∈Kc ∀k′ ∈Kc \{k} (15)

(8)− (12).

Constraints (15) ensure that if the path is used, i.e. vck = 1, then the path travel time

does not exceed the travel time experienced on all the other OD pair used paths by a fixed

percentage γL. If path is not used (vck = 0) then the path travel time is unbounded. If

the path is used (vck = 1), then the path travel time is constrained to be lower than a certain

threshold γL of the experienced travel time on all used paths, namely paths k′ ∈Kc\k with vck′ = 1.

Solving the UC-SO model implies that an intractable number of constraints and variables

have to be inserted in the formulation. In order to solve the model via an exact method we have

implemented a separation procedure in order to insert only those constraints that are needed to

obtain the optimal solution. However, this has turned out to be not sufficient to use the exact

formulation on instances with more than 50 nodes. In order to overcome this limitation, in Section

3 an heuristic algorithm to solve the UC-SO model has been presented.
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2.2 System optimal routing of traffic flows with user constraints and

the UC-SO model: a comparison

As introduced in the literature review, the system optimal routing of traffic flows with user

constraints concerns using a restricted set of eligible paths for each OD pair. Eligible paths are

those paths that have a normal length that is lower than a certain percentage of the shortest path

normal length. We denote this percentage as γ.

Here an example of the different formulations behaviour is proposed. In Figure 1 the network

used in the experiment is shown where tFF and u are parameters used for the latency function. In

using the formulations proposed by Angelelli et al. (2016b) and by Jahn et al. (2005), the path set

is computed by considering the γ percentage. Let the γ be equal to 1%. In this case, only shortest

paths from each origin to each destination are considered as eligible and, hence, all demand will

flow on them.
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2500 t
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25
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Figure 1. The network

In Figure 2 the solution obtained using the system optimal routing of traffic flows with user

constraints, as proposed in Angelelli et al. (2016b), is shown. Here OD pair 1 entirely flows on path

0-1-2-3 while OD pair 2 entirely flows on path 1-2 since they are the only allowed paths. Travel

times are the following:

• OD pair 1:

– 0-1-2-3: 20220 sec
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• OD pair 2:

– 1-2: 19540 sec

The total travel time in this assignment is 59.3 millions of seconds.

3

D1

2

D2

4

1

O2,d2 = 2000

0

O1,d1 = 1000
y1 = 1000,y2 = 0 y1 = 1000,y2 = 2000 y1 = 1000,y2 = 0

y1 =
0,y2 =

0 y 1
=

0,y
2
=

0

Figure 2. System optimal routing of traffic flows with users constraints using γ = 1%

We recall that this solution is not feasible for the UC-SO model since there are other paths

that are much faster than the used ones. In order to compare the impact of limiting the available

paths, the objective function under a pure system optimal traffic assignment is 1.658 millions of

seconds. Noticed that in this pathological case the total travel time, using the model proposed in

Angelelli et al. (2016b), is more than one order of magnitude larger. In order to overcome this

limitation, the traffic regulator can choose to consider a larger γ value. In fact, allowing γ = 80%,

the path 0-1-4-2-3 become eligible for OD pair 1.

In Figure 3 the solution using γ = 80% is shown. Here OD pair 1 entirely flows on path 0-1-4-2-3

while OD pair 2 flows on path 1-2. Travel times are the following:

• OD pair 1:

– 0-1-4-2-3: 1021.31 sec

• OD pair 2:

– 1-2: 3940 sec
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The total travel time here is 8.9 millions of seconds and, even in this case, the solution is

infeasible for the UC-SO model since OD pair 2 would experience much less time in flowing on

path 1-4-2.
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Figure 3. System optimal routing of traffic flows with users constraints using γ = 80%

In the following, the same situation is analyzed when using the L-UC-SO model and the UC-

SO model and allowing γL = γFP = 1%. Since we allow all possible paths from origin to destination

both OD pairs have two possible paths: 0-1-2-3 and 0-1-2-4-3 for OD pair 1, 1-2 and 1-4-2 for OD

pair 2.

In Figure 4 the L-UC-SO model solution is shown. Here OD pair 1 entirely flows on path

0-1-2-3 while OD pair 2 entirely flows on path 1-4-2. Travel times are the following:

• OD pair 1:

– 0-1-2-3: 1025.056 sec (fastest path)

– 0-1-4-2-3: 1044.629 sec (the relative difference with the fastest path is 1.9%, not used)

• OD pair 2:

– 1-2: 341.685 sec (fastest path, not used)

– 1-4-2: 361.258 sec (the relative difference with the fastest path is 5.7%)

Here no flow is sent on paths 0-1-4-2-3 and 1-2 since even sending a very small ε flow on these

paths will make this solution not feasible for the UC-SO model because Constraints (7) would be

violated.
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Figure 4. L-UC-SO model solution

In Figure 5 the solution using the UC-SO model is shown. Here OD pair 1 entirely flows on

path 0-1-4-2-3 while OD pair 2 flow is sent on its two paths. Travel times are the following:

• OD pair 1:

– 0-1-2-3: 1040.408 sec (fastest path)

– 0-1-4-2-3: 1043.978 sec (the relative difference with the fastest path is 0.34%)

• OD pair 2:

– 1-2: 357.037 sec (fastest path)

– 1-4-2: 360.607 sec (the relative difference with the fastest path is 0.99%)

Here flow on 1-2 is higher than in the previous solution. This is because the model divides the

flow in such a way the fastest path on the network is very similar to the experienced travel times.

Differences in the objective function are very small. In fact, the L-UC-SO model produces a

total travel time that is 1.749 millions of seconds while the UC-SO model produces a total travel

time that is 1.763 millions of seconds.
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Figure 5. UC-SO model solution

3 A matheuristic for the unfairness constrained system op-

timum model

Solving the UC-SO model implies the generation of all the feasible paths from origin to

destination for each OD pair. The cardinality of the path set obviously depends on the instance

size and on the number of OD pairs involved. The number of paths has been proved to be

exponential in the instance size (see Angelelli et al. (2016a) for details). Moreover, each path

corresponds to a number of continuous variables and to a binary variable in the UC-SO model.

Thus, the UC-SO model could turn out to be a MILP formulation containing millions of binary

variables and, hence, too big to be tractable in practice. In order to overcome this limitation,

a matheuristic algorithm, called Path Construction Matheuristic algorithm (PC-M), has been

developed. It generates only a small subset of all possible paths from each origin to each destination

on which the MILP formulation is small enough to be tractable in practice. The search for these

promising paths is iteratively performed by using information provided by the following linear

Rel-UC-SO model:
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min
∑

(ij)∈A
σij +

∑
c∈C

∑
k∈Kc

zck

(1)− (11)

zck ≤ 2−2vck ∀c ∈ C ∀k ∈Kc (16)

zck ≤ 1− 1
2vck ∀c ∈ C ∀k ∈Kc (17)

zck ∈ [0,1] ∀c ∈ C ∀k ∈Kc (18)

vck ∈ [0,1] ∀c ∈ C ∀k ∈Kc. (19)

The Rel-UC-SO model consists in the linear relaxation of the UC-SO model (variables

vck are relaxed in Constraints (16)) with a modified objective function and additional technical

constraints (16)-(18) that aid the formulation in finding results that are more similar to the

MILP formulation ones. In Rel-UC-SO model variables vck are bounded to be in the interval

[yckdc ,1 +
(1+γFP ) min

k′∈Kc
{τck′}−τck

M ] because of Constraints (13) and (8). Furthermore, zck is bounded

to be greater than 2− 2vck and 1− 1
2vck while minimizing ∑

c∈C

∑
k∈Kc

zck. If the path is not

used (yck = 0), then vck is as the biggest value for which Constraints (13) are satisfied, i.e.

min{1,1 +
(1+γFP ) min

k′∈Kc
{τck′}−τck

M }. If the path is used (yck > 0), then value vck has to be fixed

as close as possible to 1. This work is done by Constraints (16)-(18) together with the modified

objective function.

The PC-M algorithm starts considering only the fastest path under free-flow conditions for

each OD pair, solves the Rel-UC-SO model on these paths, uses the outcome variables to weight

an auxiliary network on which a path search is performed, and repeats. The heuristic terminates

when no new paths can be found.

PC-M algorithm workflow is shown in Algorithm 1. The set P is initially set as an empty

set and the set P̄ is initially filled with the shortest paths from Oc to Dc using free-flow travel

times. As long as the PC-M algorithm is able to generate new paths, namely while P̄ 6= ∅, the new

paths in P̄ are added to P , the Rel-UC-SO model is solved using P as path set and, finally, the

routine findFasterPaths(x) is called in order to find new promising paths P̄ . When no new paths
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are found, the UC-SO model is solved considering P as path set. The PC-M algorithm solves

the UC-SO model allowing a relative MILP gap tolerance equal to 1%. This allow the PC-M

algorithm to be quick in finding the heuristic solution. However, a smaller tolerance gap can be

chosen in order to obtain an even better heuristic solution at the cost of a significant increase in

terms of computational time needed to return a solution.

At each iteration of PC-M algorithm, the linear programming model Rel-UC-SO returns an

assignment x. Given the solution x, findFasterPaths routine seeks to find the fastest path for

each OD pair c ∈ C using the current traffic assignment x in determining the traversing times

through the latency function. If no new paths can be found, the findFasterPaths routine returns

an empty set as shown in Algorithm 2.

Algorithm 1: PC-M algorithm
input : G : graph of the road network,

C : set of OD pairs,
γFP : maximum fastest path unfairness allowed

output: x : heuristic solution of UC-SO model
global : G,C,γ,P

P := ∅;
P̄ := shortest paths from Oc to Dc using arc lengths tij = tij(0) for c ∈ C;

while P̄ 6= ∅ do
P := P

⋃
P̄ ;

x := optimal solution of Rel-UC-SO with path set P ;
P̄ := findFasterPaths(x);

x := optimal solution of UC-SO with path set P ;
return x

Algorithm 2: findFasterPaths
input : x traffic flow
output: P̄ path set
global : G,C,P

P̄ := ∅;

for c ∈ C do
p := shortest path from Oc to Dc using arc lengths tij = tij(xij);
if p /∈ P then

P̄ := P̄
⋃
{p};

return P̄
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4 Computational results

A set of 32 instances with 45 nodes (group A) different in terms of geography and demand

patterns, 4 increasing size instances with 270, 300, 330 and 360 nodes (group B) and 2 real-world

instances has been used in a computational study to assess the performance of the UC-SO model

and of the PC-M algorithm.

Group A and B instances are available at http://or-brescia.unibs.it/instances. Details

on how the instances are generated are shown in Angelelli et al. (2016a) while real world instances

come from the Transportation Networks for Research GitHub repository Stabler (2018). All exper-

iments are conducted by using the UC-SO model and using the PC-M algorithm.

Experiments are organized in two parts. In the first part, the performance of the UC-SO model

on instances in group A is discussed. The analysis is conducted with γFP values ranging from 1%

to 10% with increments of 1% (i.e., 10 traffic assignments). The second part is focused on testing

the performance of the PC-M algorithm. The first comparison is run on instances of group A, and

the second on group B and real world instances. The value of parameter γFP range from 1% to

10% with step 1%. The accuracy level n used is 1000 for group A and B instances and n= 100 for

real-world instances.

The models were solved using CPLEX 12.6.0 on a Windows 64-bit computer with Intel Xeon

processor E5-1650, 3.50 GHz, and 64 GB Ram. For all experiments, the BPR latency function has

been used with Uij = 4uij (value of uij is provided in each instance file).

The statistics collected for each instance are described in Section 4.1. Performance of the UC-

SO model is presented and discussed in Section 4.2 while the performance of the PC-M algorithm

is shown in Section 4.3. Results presentation relies on graphical and tabular representation.

4.1 Statistics

In the following all the computed and collected statistics are defined. Unfairness measures used

in our computational study are the the loaded unfairness and the fastest path unfairness.

• Total travel time
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Θ∗: Total experienced travel time for the traffic assignment produced by the UC-SO

model.

ΘSO: Total experienced travel time for the traffic assignment produced by UC-SO model

using γFP =∞.

ΘUE : Total experienced travel time for the user equilibrium traffic assignment.

ΘH : Total experienced travel time for the traffic assignment produced by the PC-M

algorithm.

Θ: Optimality gap Θ = ΘH−Θ∗
Θ∗ .

• User experience for each OD pair c ∈ C

τck: Experienced travel time on path k ∈Kc.

τLc := min
k∈Kc
{τck|yck > 0} (minimum experienced travel time for OD pair c ∈ C).

τBCc := min
k∈Kc
{τck} (minimum travel time possible for OD pair c ∈ C).

IL := 1
D

∑
c∈C

dc
∑

k∈Kγ
c

yck
τck−τLc
τLc

loaded unfairness.

IBC := 1
D

∑
c∈C

dc
∑

k∈Kγ
c

yck
τck−τBCc
τBCc

fastest pathunfairness.

• Computational time

The computational time is computed considering the time needed to generate paths and solve

the model.

• Memory usage

The number of generated paths.

4.2 Results for UC-SO model

The traffic assignments produced by the UC-SO model have been analyzed for γFP values

ranging from 1% to 10% with increments of 1%. Reported values are averaged over the 32 instances

of group A.
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Figure 6 shows the total travel time Θ∗ measured in seconds as a function of the parameter

γFP . In order to compare the total travel time obtained using the UC-SO model, in Figure 6 the

total travel time under user equilibrium and system optimum is also displayed as horizontal lines.

When γFP is greater than 6%, Θ∗ is almost equal to ΘSO. This means that, on average, allowing a

fastest path unfairness value of 6% produces almost the same benefits for the system we would have

without bounding the experienced fastest path unfairness. Furthermore, the total travel time is

always better than the user equilibrium travel time. In fact, the user equilibrium traffic assignment

is a feasible solution for the UC-SO model even when γFP = 0%.
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Figure 6. Total travel time, Θ∗, as a function of parameter γF P

Figure 7(a) shows the average fastest path unfairness, IBC , as a function of γFP . Allowing

a γFP value equal to 1% the average experienced fastest path unfairness is far from being near

the imposed threshold. In fact, it is lower than the 0.05%. Furthermore, even allowing greater

γFP values, the average loaded unfairness is under the 0.5%. This means that, in any assignment,

drivers are experiencing a travel time that is very similar to the fastest one on the actual road

network and it is particularly important from the users point of view since the assignment is almost

"envy-free", i.e. no user will complain because they could be routed on faster route.
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We added complementary information in Figure 7(b) where the maximum experienced fastest

path unfairness over all group A instances is shown as a function of γFP . This measure gives us

an idea of the worst-case situation for an user. The maximum value is sensibly lower than the

maximum value allowed. For any reported γFP , the maximum experienced fastest path unfairness

is always under 5%. In the set of tested instances, the maximum experienced fastest path unfairness

decreases when γFP increase to 8%. This due to the fact that the objective function does not involve

unfairness and, hence, unfairness could decrease even if a greater value of γFP is considered. In fact,

this phenomenon vanishes when results are averaged over 32 instances but it happens frequently

with different γFP values. In particular, two of the 32 instances are responsible for the peak

observed when γFP = 8%. For the sake of completeness, in Figure 7(c), we report also the standard

deviation of the experienced fastest path unfairness. The standard deviation shows that, on average,

fastest path unfairness values are almost allocated near the average value in the distribution. We

do not report the value of loaded unfairness since the behaviour is very similar to the fastest path

unfairness. This is due to the fact that fastest path on the current network is almost always used.

There a very few cases in which the fastest path is not used but still it happens for some OD pairs.

4.3 PC-M algorithm

To assess the computational benefits of the PC-M algorithm, the computational time of the

UC-SO model, the run time of PC-M, and the optimality gap Θ (average and maximum value),

for different γFP values, are shown in Table 2, where the values are averaged over the 32 instances

of Group A.

Since the number of paths generated in the UC-SO model is the same considering different

γFP values (we are generating all possible paths from origin to destination), the additional run

time needed to solve the UC-SO model is due to the fact that more restrictive constraints are

used considering lower γFP values. In fact, the separation procedure, implemented to dynamically

add constraints, adds more constraints when γFP decreases because it will detect more violations

because of the lower value of γFP . On the other hand, the computational times of PC-M are

almost steady. Moreover, in all cases PC-M computational time is two orders of magnitude less

than the computational time needed to solve the UC-SO model. In addition, the PC-M algorithm

is also very accurate. In order to show the accuracy, in Table 2, the average optimality gap along
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Table 2. UC-SO run time (sec.), run time (sec.), average optimality gap (%) and maximum optimality
gap (%) for PC-M on Group A instances.

UC-SO PC-M Θ
γFP run time (sec) run time Avg. gap (%) Max. gap (%)
1 563 1.61 0.22 0.63
2 321 1.39 0.24 1.55
3 176 1.30 0.30 1.30
4 153 1.27 0.25 1.00
5 151 1.30 0.22 0.96
6 132 1.28 0.21 0.88
7 115 1.30 0.20 0.90
8 106 1.28 0.19 0.90
9 99 1.28 0.19 0.90
10 101 1.30 0.19 0.90

with its maximum value is shown for each γFP value. The average optimality gap is very small as

it is always lower than 0.30%. Furthermore, the maximum value is, in the worst case, lower than

1.55%. Along with optimality gaps, we have also computed the number of paths generated by the

PC-M algorithm and the number of paths needed to solve the UC-SO model. On average, the

number of paths generated for the UC-SO model is 32000 while the number of paths generated

by the PC-M algorithm is, on average, 35 which means that the PC-M algorithm performs better

also in terms of memory consumption (three orders of magnitude).

In Table 3, results for the 4 Group B increasing size instances are shown. Here results for

the UC-SO model are missing since the solver did not return any result, either because the path

generation procedure ran out of memory or the computational time exceeded the limit of 14400

seconds. In Table 3, the computational time needed to run the PC-M algorithm is shown. As for

group A instances, computational time is usually higher when small values of parameter γFP are

considered. Furthermore, we observe that computational time is on average around 300 seconds (5

minutes) even considering the largest instance that makes the PC-M algorithm computationally

valuable in solving real-world instances. Moreover, the average fastest path unfairness is very low

and far from being equal to the maximum percentage allowed. Results in Table 3 are obtained by

using n= 1000 as accuracy parameter.
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In Table 4 results using the PC-M algorithm on two real world instances (with number of nodes

224 and 416) are shown for γFP values ranging from 1% to 10%. These results were obtained using

accuracy level n= 100 for PC-M in order to speed up the algorithm. On all experiments made, we

have observed that using either n= 1000 or n= 100 is statically indifferent and, hence, in solving

big instances we decided to reduce computational times using the smallest value. All collected

statistics follow the same behaviour we have observed in group A and B instances. In particular,

the lower parameter γFP is, the higher is the computational time needed to obtain a solution. Here

the highest computational time observed is around 2 minutes.

Table 4. PC-M results on real-life instances.

Berlin-Friedrichshain
Nodes = 224, Arcs= 523, OD pairs= 506

γFP (%) Time PC-M (sec) ΘH(105sec) Average IBC (%) Maximum IBC

1 3.95 8.2941 0.04 1.0
2 4.3 8.2941 0.04 1.4
3 2.3 8.2855 0.06 1.4
4 2.4 8.2855 0.06 3.1
5 2.4 8.2855 0.07 3.1
6 2.4 8.2855 0.07 5.0
7 2.4 8.2855 0.07 5.0
8 2.4 8.2855 0.07 8.0
9 2.4 8.2855 0.07 9.0
10 2.3 8.2855 0.07 9.0

Anaheim
Nodes = 416, Arcs= 914, OD pairs= 1374

γFP (%) Time PC-M (sec) ΘH(107sec) Average IBC (%) Maximum IBC

1 115.2 8.0859 0.04 1.0
2 51.8 8.0818 0.09 2.0
3 30.1 8.0687 0.14 3.0
4 35.7 8.0563 0.21 4.0
5 21.4 8.0351 0.24 5.0
6 20.1 8.0626 0.21 6.0
7 30.1 8.0525 0.29 7.0
8 16.7 8.0314 0.28 8.0
9 16.9 8.022 0.42 9.0
10 17.2 8.013 0.43 10.0
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5 Conclusions and future research

The user time constrained system optimum model proposed in this paper provides a powerful

tool in controlling the user unfairness while implementing a system optimum traffic assignment.

The UC-SO model produces a traffic assignment with a total travel time that is very close to the

total travel time of the system optimum assignment. Moreover, user unfairness is kept low enough

to guarantee a complete compliance to the system guidance. This is because users do not feel to be

disadvantage with respect to the others and to the current network status. As pointed out in the

introduction, the steady-state assumption, which allows us to work with static traffic assignments,

may be reasonable during rush hour periods, but will not be appropriate for a period in which the

demand varies over time. To accommodate varying demand over time, a time-dependent variant

of the UC-SO model has to be investigated. One big issue in dealing with vehicular traffic is

congestion avoidance when unexpected events occurs such as bad weather conditions, car crashes

and diversions due to work in progress. In order to study this case a dynamic framework has to

be studied in which the decision for drivers has to be taken at each node and the assignment can

change over time.
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